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I. _TRODUCTION

The recent trend toward enhancing the overall maneuvering capabilities of aircraft has

resulted in the development of new advanced aircraR such as the Short Take-Off Vertical

Landing (STOVL) and, more recently, the X-36 Tailless Fighter among others. This trend

has also produced new and enhanced subsystems, such as advanced propulsion subsystems

with vectored thrust, which must be closely coordinated or integrated with the existing

aircraft subsystems, such as the aerodynamic airframe subsystems which may now have

unconventional aerodynamic control surfaces. The potential capabilities of the resulting

aircraft have significantly improved. However, to achieve this potential, we must face

the challenge of integrating all the aircraft subsystems so that each subsystem

cooperates with the others in a way that enhances or optimizes the overall

capabilities of the aircraft. IMPACT or Integrated Methodologies for Propulsion and

Airframe Control Technologies is a program that addresses these design concerns.

In this work, we will develop a new methodology for designing an integrated control

system which produces coordinated action among the subsystems while limiting the

complexity of the control law and maintaining the identity of the subsystems in the closed-

loop system. To achieve these objectives, we will use the SOFFT or Stochastic Optimal

Feedforward and Feedback Technology structure [1] for the control system. We will

modify and extend the SOFFT methodology as needed so as to produce the desired level

of integration and cooperation among the subsystems. Building upon previously

developed methods such as those described in [2]-[10], we will also develop a feedback

control algorithm which limits feedback between specified subsystem variables so as to

maintain the identity of the desired subsystems while allowing feedback communication

among others to obtain the desired level of cooperation among them. We will apply the

methodology developed to the design of an integrated flight and propulsion control system

for a modified F-15 SMTD aircraft to provide an example of the design methodology.



At present, the usual approach in designing control laws for complex systems which

contain some degree of coupling among several subsystems is to design independent

control laws for each subsystem, then try to produce some integration by an outer loop

design between selected subsystems, while others are left separate or uncoupled. An

example of these approaches is found in designing the longitudinal and lateral flight

control systems for most aircraft. The longitudinal and lateral dynamics are not coupled in

level flight, but become coupled as soon as the aircraft rolls and has a nonzero bank angle.

However, the longitudinal and lateral flight control laws are usually designed

independently, without any coupling, and are usually left uncoupled. In the case of the

propulsion system, the longitudinal and propulsion control systems are usually designed

independently. Often, the two subsystem designs are left uncoupled with the thrust as the-

propulsive subsystem command while the pitch rate or other suitable variable is the

longitudinal airfi'ame subsystem command. Sometimes, an autothrottle system is designed

which then couples the two closed-loop subsystems. In both cases, the original design of

the subsystem control laws is done with no cross-coupling or cross-communication among

the subsystems.

Why Use Integrated Control?

When the subsystems have no coupling, using a control law with cross-coupling does not

improve performance, at least when a quadratic objective function is being used. On the

other hand, when the subsystems are coupled to some degree, the optimal feedback

control law will contain nonzero cross-coupling terms. In this case, designing the

control law for each subsystem independently from the others corresponds to

treating any coupling terms from the other subsystems as unknown disturbances.

Then, each subsystem control law must be designed to worst case specifications as if the

disturbances were of an unknown nature. While performing a maneuver, the coupling

from the other subsystems would have to build up into noticeable errors in the controlled

variables, beyond the level of error usually caused by sensor noises and other truly random

disturbances, before the control law can even start to take corrective action to reduce the

error. On the other hand, knowing the dynamics of the coupling terms, a

centralized/coupled control system can act before errors due to the coupling terms build

up, thus producing a better performance.



While a completely coupled or centralized control law may produce less error in

performing maneuvers, it also has some disadvantages. A completely coupled or

centralized control law would feed every subsystem state variable (or every sensor

measurement in the output feedback case) to every subsystem control variable. This

usually results in a very complicated and impractical control law. State variables which

have minimal effect on a subsystem end up being fed into the subsystem for reasons which

are difficult to understand. In general, the complexity of the control law and the closed-

loop system make it difficult to understand _nd hard to analyze, particularly in evaluating

nonlinear effects.

Another important disadvantage of a centralized or fully coupled control law is the

subsystems can loose their identity within the closed=loop system. When each state

variable is fed into each subsystem, the original properties of the subsystem become

theoretically less meaningful. Independent system validation is no longer meaningful.

However, from a practical standpoint, analysis of each subsystem and validation of its

operation under various circumstances is a necessary part of the flight procedure.

Thus, the best solution to the question of integrating subsystems is a compromise in which

some state variables or sensor measurements are fed into certain subsystems which may be

specified by the control system designer while other states or measurements are only fed

into the subsystem from which they originated but are not allowed into the remaining

subsystems. Each subsystem control law feeds back its own states or measurementsplus a

limited number of variables which couple it to the other subsystems The selection of the

constraints and the corresponding selection of the control law structure is leR to the

control system designer who can take advantage of the specific system requirements for

each design problem.

Summary

In Section II, we will first summarize the SOFFT control methodology developed

previously for the centralized case. Then, we willdescribe the approach of using the

feedforward control law in a different way than the feedback control law for purposes of

integration. Finally, we will consider the impact of specific problems, such as an unstable

open-loop plant and control -dependent measurements, on the design of the integrated

feedforward SOFFT control law.



In Section l]I, we will consider the feedback control law. We will formulate the sampled-

data stochastic output feedback problem with constraints among the subsystems for a

single model or for a time-invariant linear system. We will develop an algorithm to

compute the feedback control gain matrix with the given constraints. Then, we will

extend the problem to the Variable-Gain case. Finally, we will consider some other

applications of the constrained output feedback problem which may be of interest.

In Section IV, we will apply the methodology developed in the previous sections to the

design of an integrated flight and propulsion control system for the modified F-15 SMTD

aircraft at one flight condition. We will describe the selection of the command model to.

produce the desired flying qualities, the selection of the feedback control structure and the

results of a linear simulation.

Our main conclusion is that our approach of using a SOFFT structure with a

centralized/coupled feedforward control law and a constrained output feedback control

law provides an excellent solution to the problems associated with Integrated Control.



II. INTEGRATED SOFFT CONTROL

The approach of designing the subsystem control laws independently fi'om each other, thus

having an uncoupled control law, can be improved by including some level of integration

into the design. On the other hand, a completely centralized control law (e.g., a full state

feedback control law) for the overall integrated system has the disadvantages described in

the Introduction; namely, increased complexity and the loss of subsystem identity.

Therefore, the best approach to integrated control design is to allow coupling or

communication among the subsystems where improvement of the overall performance is

possible, but limit the coupling among the subsystems where this will lead to increased

complexity and not much improvement in the performance.

The SOFFT control structure developed in [ 1 ] provides an excelent vehicle for achieving

these objectives: limit complexity, maintain subsystem identity, yet provide coupling where

performance improvement is possible. For ease of understanding and for completeness,

we will first provide a short summary of the SOFFT control approach for centralized

systems. Then, we will describe how we can extend this approach to develop an

Integrated Control design methodology while still maintaining the important advantages of

the SOFFT control approach itself. Finally, we will consider some special problems which

are of interest in designing integrated control systems.

A. CENTRALIZED SOFFT CONTROL

The Stochastic Optimal Feedforward and Feedback Technique (SOFFT) is a control

design methodology in which the feedback and feedforward control laws are designed

separately, each using optimal control, and are combined using the SOFFT control

structure which results from the problem formulation[l], [2]. Many control systems are

designed essentially as feedback control laws, sometimes preceded by a shaping filter as



shown in Figure 1. One of the main motivations of the SOFFT approach has been the

observation that a feedback system is inherently a reactive controller. In other words,

COMMAb'DS-_ SHAPING_FILTER CON'I_OLI,ERk.,

DIb'TURB_CES

)

° I

Figure 1. Typical Error Feedback Control Law

a feedback system only reactsto errorsafterthey have occurred. A feedback control

system produces no control command when the statehas no current errorseven ifthe

(pilot) input commands are nonzero.

To produce the desired response to input commands, such as flying qualities, it is

necessary to use a feedforward control law in some way. The explicit model following

problem defines an optimal control problem with a cost function which penalizes

deviationsfrom a given command model trajectoryand also penalizescontrol activity.

The explicitmodel follower containsboth a feedforward and a feedback controllaw and

solvesthe problem of the feedback control law being only reactive. The explicitmodel

follower produces nonzero commands even when the stateerror is zero if the input

commands are nonzero. In thiscontrollaw, the feedback and feedforward control laws

(i.e.,the corresponding gain matrices)are highlydependent on each other because they are

obtainedby optimizinga singlecostfunction.

The basic problem with the explicit model following formulation is that it combines the

command tracking objectives (tracking errors) with the objectives of noise attenuation and

robustness into a single cost function. The result is that an explicit model follower cannot

follow an arbitrary command without some tracking error even when the system model is

known perfectly and there are no random noises or disturbances.. This is due to the fact

6



that any nonzero command requires some nonzero control action. But since control

action is penalized to achieve the usual feedback objectives, the optimal control does not

produce zero tracking error, but a combination of some tracking error and control activity

which results in a lower cost. On the other hand, if we do not penalize control action, the

resulting control will respond to any noise or random disturbance thus possibly amplifying

noise rather than attenuating it. Thus, the explicit model following problem places

conflicting demands on the problem. In general, to produce better command tracking, we

have to give up noise attenuation or robustness.

The SOFFT formulation provides a solution to these problems by separating the objectives

for the feedforward control fyom those related to the feedback control. Accordingly, it

becomes possible to track input commands perfectly, with zero error, when the system

model is known perfectly and no random noises are present. This command tracking

objective is achieved without a corresponding deterioration in the feedback control

objectives such as noise attenuation, random disturbance accommodation or system

stability.

In the SOFFT approach, we consider command tracking or producing a desired response

to given (pilot) input commands as a feedforward control objective. On the other hand,

noise attenuation, disturbance accommodation and stability are considered to be feedback

control objectives. In other words, we do not attempt to produce flying qualities with the

feedback control law, just as we would not try achieve system stability with the

feedforward control law.

1. Problem Formulation

Consider the linear system defined in (I) and (2).

Xk÷l = _x Xk + ]"x u_t + w_ (1)

y_ = C_ x_ + on (9_)

where x k is the n_-dimensional state vector, u_, is the n_-dimensional control vector, yn

is the n_-dimensional measurement or feedback vector, w_ and o_, are the plant and



measurement noise vectors, respectively. We assume that the plant and measurement

vectors are zero mean white noise sequences uncorrelated to each other. We will consider

the plant and measurement equations shown above to be sampled-data discretizations of a

continuous time system such as airframe or propulsion dynamics systems. However, the

development described here applies to a purely discrete system as well.

Note that the measurement or feedback vector in (2) does not depend on the control

vector. We will extend the formulation to the case in which control-dependent

measurements are present later in this section by embedding this case into the one shown

in (2). However, here we will formulate the SOFFT problem for the plant and

measurements shown above

Feedforward Control

Let us suppose that the plant control vector, un,, is composed of two parts: one part, u_,

coming from the feedforward control law and the other part, fn`, coming from the

feedback control law. Thus,

un` = u_, + fn` , k = 0, 1, 2, -.- (3)

Accordingly, part of the state and part of each measurement will be due to the

feedforward control, u_,, while the remaining portion will be produced by the feedback

control, fin,. The objective of the feedforward control law is to produce the control

sequence which depends only on the pilot input commands (i.e., not on the noisy

measurements which are fed back) and produces the desired system response when no

random plant or measurement noise is present. Therefore, we define the feedforward state

trajectory and measurements using the equations:

(4)

where the superscript "*" denotes the feedforward part of the variable with which it is

used.



Now, consider a command model of the following form.

zk., = _, z, + F. u_ (6)

y= = H e z k (7)

where the command model state, z_, has n, components which will usually be different,

often much smaller, than plant state dimension, nx. While other stochastic interpretations

of the command model provide various possible applications ([1], pp. 17,18), here, we will

only discuss one particular interpretation. We interpret the command input vector, u,,, as

the pilot command input vector, e.g., the pilot stick input. Furthermore, we will restrict

the number of inputs to the command model (i.e., the dimension of u_,) to be the same as

the number of plant control components, n_,. Therefore, the number of pilot input

commands will be the same as the number of independent plant controls.

Now define the tracking error vector as follows.

e'k=H,y_-Hzzk (8)

where the matrices Hy and H, are selected by the control system designer so as to select

the plant variables which should track the appropriate command model states. Here, we

will assume that the dimension of the tracking error vector is the same as the number of

input commands and the number of plant controls, n_,.

If the tracking error is zero at every sampling instant, we have the "perfect tracking" case.

Note that perfect tracking describes the feedforward trajectory only since the actual state

will always have some tracking error due to sensor noise, plant noise, other disturbances

and nonlinearities. If perfect tracking is not achieved for some reason, then we would

want to minimize the tracking error using some optimization criterion as discussed in the

following.

We select a cost function quadratic in the tracking error since the main purpose of the

feedforward control law is to produce the specified response to the command model



inputs determined by (6), (7) and (8). To accommodate other possible objectives, we

include other terms in the cost function.

J" = _n® 2(N + 1)

where E denotes the expectation operator.

Since the pilot input commands are not known a" priori, we model the u= as a stochastic

process which we are measuring together with the other measurements. Here, we assume

that we have a white noise process. Of course, it is possible to choose other statistics for

this random process with minor modifications to problem formulation.

The SOFFT feedf'orward control is obtained as the solution of the following optimization

problem. Find the controL, u_,, of the form

(10)

which minimizes the cost function (9) subject to the constraints (4) - (8).

The general solution to this problem is given in [2]. Here we win summarize the solution

to the perfect tracking case. Observing the cost function (9), note that when the matrices

Q_ ,R_ vanish, the cost function is minimized if'the tracking error is zero at every sampling

instant. The only possible impediment to this would be the constraints (4) - (8). Thus,

unless the system dynamics do not allow a particular trajectory, the optimal solution for

this cost function would produce the perfect tracking feedforward control law.

For the perfect tracking case, the feedforward gain matrices are given by [2]

K: = [H, H_ ¢, (11)

. _ -1 gK. -[H_F_] ,0_ (12)

lO



K= = -[H_ F_ 1-' H. F_ (13)

where

H_, =HyC,, . (14)

Thus, when the matrix H x Fx is non-singular, perfect tracking is possible and is given by

the gain matrices above. When H x Fx is singular, there may be many solutions to the

problem, so that adding further constraints may determine a unique solution. The more

difficult case corresponding to a nearly singular matrix should be investigated in detail for

the particular design problem under consideration. Generally, this implies that the control

authority of the system may be insufficient to track certain trajectories commanded by the

pilot. Alternately, it may also signal that the selected command vector is not suitable to

the system being controlled.

It should be noted that the philosophy in perfect tracking is that the pilot knows the

aircraft subsystems quite well and the command signals are not corrupted by random noise

(since they are being computed by the on-board computer), so that the automatic control

system tries to track his commands perfectly, if possible, unless constrained by the

subsystems' physical limitations such as rate or position limits or other saturation

processes.

Feedback Control

If the actual system contained no noise, had no disturbances, no limiters or other

nonlinearities and the system parameters were known perfectly and did not vary, the

feedforward control described above would be suf_cient to control it. Of course, none of

these conditions hold in practical situations. Accordingly, the basic objective of the

feedback control law is to minimize any deviations from the commanded trajectory despite

the presence of noises, disturbances, nonlinearities, parameter uncertainties, etc. A

number of other objectives may be added to the list; e.g., type 1 behaviour in the

commanded variables, reasonably low levels of control activity, etc.

11



Let us define the deviations or perturbations from the feedforward (or *) trajectory as

follows.

= (15)

y_, = y_, -y_, (16)

where the feedforward state and measurement vectors, x_ and y:, respectively, are

defined by (4) and (5). The perturbed corrtrol vector, _,, is similarly defined by (3).

Combining the plant equations (1) and (2) with the feedforward equations (4) and (5), we

find that the perturbed variables are subject to the dynamical equations

(17)

(18)

In other words, the deviations in the state and measurements have the same dynamics as

the original plant. It is important to note that the usual perturbation equations ot_en used

in such design problems describe the deviation of the total state variables from a fixed or

constant operating point (or a nominal flight condition). The equations in (17) and (18),

however, describe the deviation of the total state variables from the commanded trajectory

which is not fixed, but may be performing a fast maneuver and transitioning from one

operating point to another. A more detailed description of the derivation starting from the

continuous nonlinear plant equations is given in [ 1].

While the feedforward control law may be performing a high agility maneuver, the

objective of the feedback control law will be achieved by keeping the deviations described

by (17) and (18) as small as possible despite all the noises and disturbances present in the

system. If these deviations remain small, then the total state will be near the trajectory

commanded by the pilot.

Here, we will consider a Proportional-Integral-Filter (PIF) feedback control structure as

this versatile structure provides a type 1 control law with some smoothing (filter) to

12



reduce high frequency control activity which may result from random noises in the system.

Almost any other structure can be used to produce other types of control laws [ 1].

To obtain a PIF control structure, augment the perturbation equations in(17) and (18) by

the additional equations

_+, = i_ + at % + w._ (19)

L÷,--ix +at(_,Y., +_. _)+w,, (20)

where at is the sampling period used for digital control system, _, corresponds to the

rate of change of the control position vector, _, and i k corresponds to the integrators of

the perturbations or errors in the variables commanded by the feedforward control law.

The noise terms have been added to the equations for generality. Since the computations

corresponding to these equations will be performed on the control computer, there is no

physical error that is introduced other than the round off occurring in the computations,

generally a negligible term.

As a result of (19), note that the feedback control position, _,, has now become part of

the augmented state vector and is no longer the control vector for the augmented problem.

The control for the augmented problem is the rate of change, _,. For the augmented

problem, we will consider a feedback control of the form

(21)

The augmented system for the feedback problem can be obtained by augmenting the state,

measurement and control vectors as well as the plant and measurement noise vectors as

shown below.

/ /L L
(22)

_j, = _ (23)

13



W_

W k = W_ /-)_ -" /-)_

w_k O_k

(24)

Combining the state and measurement perturbation equations in (17) and (18) with the

control rate and integrator equations in (19) and (20), and using the augmented state and

measurement vectors in (22) - (24) along with control equation in (21), it is possible to

express the augmented feedback control problem in the following form.

-_'k+_= _ Xk + F vk + w k : (25)

Yk = C ":_'k + Ok (26)

where the augmented system matrices are defined appropriately in terms of the original

perturbation system matrices. The feedback control is restricted to the form

x. (27)

Thus, the augmented problem also has the form of a discrete stochastic system with

measurements consisting of linear combinations of the state corrupted by the augmented

white noise process. Selecting a quadratic cost function, we have

J(K)= u--_lirn 2(Nl+ 1) E{k_=o _'rk+_ Q-_'k+] +_r R_k } (28)

The feedback control problem can now be posed as follows. Find a feedback control _k

which minimizes the selected quadratic cost function (28) subject to the constraints given

by (25) -(27). This is precisely the discrete Stochastic Optimal Feedback problem

discussed in [3] and can be solved using the algorithm developed therein. The variable-

gain version of the problem is discussed and solved in [5]. Also note that cross-terms can

be included in the cost function by introducing a preliminary feedback (see [10], p242).

14



2. The SOFFT Control Structure

The problem formulation described in the previous section is used to design two optimal

control laws: 1) a feedforward control law whose objective is to track the pilot's input

commands and produce specified flying qualities or, more generally, to produce a specified

response in certain variables, and 2) a feedback control law whose objective is to

maintain the deviations of the actual trajectory from the commanded one as small as

possible despite noises, disturbances, nonlinearities, etc. by feeding back measurements of

the actual variables. The formulation of the problem also produces a specific system

structure which integrates the feedforward and the feedback control laws so that they

cooperate with each other. Figures 2 and 3 show this organization of the overall control

law to which we shall refer as the SOFFT Control Structure.

The control command sent to the plant is the sum of two components: one generated by

the feedforward controller and the other generated by the feedback controller as shown in

I zk]-7co RoLu COMMAND FEEDFORWARD

•k MODEL

Figure 2. SOFFT Control Structure

y;k
DISTURBANCES

NOISE

equation (3). The feedforward control system is obtained by implementing equations (4),

(5), (6) and (10) which compute the two output vectors of the feedforward control law,

namely u_, and y_. The only input of the feedforward control law is the pilot input

command vector u_. On the other hand, the feedback control law is obtained by

implementing equations (21), (19) and (20) with no noise terms. The output of the

15
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feedback control system is _, which adds to the feedforward control u_, to produce the

total input to the plant.

Considering only the structure of the SOFFT control law, as opposed to the formulation

or methodology, we note two important characteristics which distinguish it from other

control laws such as the explicit model follower, the Command Generator Tracker (CGT),

error feedback controller, etc.

I) The feedforward comrol law contains dynamic compensation beyond the

command model, and

2) The feedforward control enters the feedback loop at two separate points with

It is also important to note that these two feedforward links (i.e., u_, and y_, ) are highly

correlated to each other. As can be seen from Figure 3, the correlation between these

two vectors is introduced by the plant and sensor models used in the feedforward control

law. When these models perfectly match the actual plant and sensor dynamics and no

noises or disturbances are present., the actual sensor output vector, y_,, equals the

feedforward measurement vector, Y_t, at every sampling instant. Accordingly, no

feedback correction is needed. When the models used in the feedforward comrol law do

not match the actual plant and sensor dynamics, or random noises and disturbances are

present, then the actual sensor output, y_,, will deviate from the feedforward

measurement or sensor vector, y_,. Accordingly, the feedback control system will

produce a corrective control action through _.,. Thus, the feedf'orward and feedback

control systems cooperate with each other and try to achieve all the control objectives.

Finally, we should point out that the block diagrams shown here should be interpreted in a

functional sense, not as the implementation diagrams. For implementation, we

recommend using an incremental implementation (see [1], [2]) of the control laws. A new

incremental implementation which is intended for systems having both control

position and control rate limiters is given in Appendix A.
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B. INTEGRATED SOFFT CONTROL: A NEW APPROACH

It is well-known that, for a continuous linear system with Gaussian statistics and a

quadratic cost function, the optimal, causal or non-anticipative feedback control law is one

that feeds back the least-mean-square estimate of the state vector [11]. It is also well-

known that this result remains valid for sampled-data systems with Gaussian statistics

[10]. It follows that, when a system consists of two or more linear subsystems which have

Gaussian statistics, quadratic cost functions and are also "uncoupled", the optimal control

for the overall system will consist of uncoupled optimal control laws for each of the

subsystems, provided that "uncoupled" is properly defined.

In this context,we consider the subsystems "uncoupled"if

1) their dynamical models are not coupled,

2) the plant and measurement noises and the initial state for each subsystem are

uncorrelated to the plant and measurement noises and the initial state of the

other subsystems,

3) the measurement vector is uncoupled; i.e., each measurement is a linear

combination of the state of only one subsystem, corrupted by white measurement

noise, and

4) the cost function for the overall system can be written as the sum of quadratic

cost functions for each subsystem.

Under the conditions stated above, each subsystem will be independent of the others. It is

easy to see that the optimal control for each subsystem wiI1 produce the optimal control

for the overall system which will consist of a set of uncoupled sub-control laws.

The conclusion we draw from this observation is that if the subsystems are uncoupled,

we cannot improve the closed-loop performance by introducing coupling through

the feedback control law. The cross-coupling of the subsystems introduced through an

"integrated" control law will not improve the system's performance.
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Now consider the feedforward control law within the context of the SOFFT control

formulation described in the previous sections. In the feedforward control case, it seems

clear that the command model itself which is selected by the control designer needs to be

uncoupled. For example, if we want to command the sum of two variables which come

from different subsystems, it is clear that the optimal feedforward control law would have

to be coupled at least for the two subsystems involved. However, if the command model

consists of uncoupled command models for each subsystem, then the SOFFT feedforward

control law for perfect tracking would also be uncoupled, provided that the necessary

matrix inverse exists. Thus, in the case of the feedforward control, we must further

consider whether the command model is coupled.

On the other hand, let us consider a system with some degree of cross-coupling among its

subsystems. The optimal feedback control law for this system will, in fact, contain some

degree of cross-coupling. In other words, in comparison to uncoupled control systems,

an "integrated" control law can improve the performance of a coupled open-loop

system. But we would expect that the amount of improvement obtained by the use of a

coupled control law would depend on the degree of coupling present in the open-loop

system. In other words, for a loosely coupled open-loop system, the performance

degradation resulting from the use of an uncoupled control law would be smaller than that

which would result for a highly coupled open-loop system.

Similar observations can be made about the feedforward control law. When the system

has some degree of coupling among its subsystems, the optimal feedforward control law

will also contain cross-coupling terms among the subsystems. Also, we would expect that

the amount of coupling in the feedforward control law would be, in some sense,

proportional to the degree of coupling present in the open-loop system.

To understand the advantages and disadvantages of designing an integrated control law

more clearly, we will start by developing the mathematical formulation of the integrated

control problem.
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1. Problem Formulation

Suppose that we have already discretized the continuous open-loop system under

consideration at the desired sampling rate, At. Thus, we have a discrete linear system of

the form shown in (1) and (2) which we will repeat here for ease of reference.

Xk+l = _x xt + Fx ua_ + w_t (I)

y_ = C_x_ + v_, (2)

We consider these equations to represent the overall or integrated open-loop system

model which consists of several subsystems. Suppose that we have L subsystems which

have varying degrees of coupling with each other. We will consider the first subsystem to

be the main system which we want to control unless specified otherwise. For example, in

our aircraR example, the first subsystem would be the airframe dynamics subsystem and

the second subsystem would be the propulsion dynamics subsystem. However, this is a

completely arbitrary selection and has no influence on the development of the integrated

controllaw.

Let the i th subsystem state vector at the k th sampling instant be denoted by x,,. Let the

ith state vector, xtk, have the dimension n,. Similarly, let the ith subsystem measurement

vector, y= k, have the dimension ny. The i th subsystem model can be expressed in the

form

L

x,_÷_= _>=x,_ +r= u_ +_{_ x;_ +r=j u._}+w_.
1=!

i = 1,2,--., L (29)

L

y,.,k _ C,,_ xiit + _Cx_t Xjk "F V_k _

j=l

i = 1,2,...,L (30)

2O



The terms included in the summation sign describe the cross-coupling terms between the

ith subsystem and the remaining subsystems. According to the degree of coupling that

exists, these terms can be null, small or large.

The integrated state and measurement vectors can be obtained by augmenting the

subsystem state and measurement vectors as shown below.

Xk --

Xlk

X2k

XLk

Yak _

Yxlk /

Yx2 k

Y_t

(31)

The integrated control vector, as well as the plant and measurement noise vectors, can be

obtained in the same manner.

Z[xl k !_l x2 k "W:dr --
ll _dc = i

"Wxl k

W x2 k

W xL k

V _dc "-

Vxl k

Vx2k
02)

The integrated open-loop system matrices in (1) and (2) can be expressed in terms of the

subsystem matrices in (29) and (30) as follows.

[ / (33)

/r ii:... 1E= L=
: i

r.,t r_

(34)
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1: i

C...

(35)

2. A SOFFT Approach to Integrated Control

The basic approach we recommend is to use a feedback control law with limited coupling,

obtained by constrained optimization, driven by a centralized perfect tracking feedforward

control law. In the following, we will describe why we view this as best approach. With

that in mind, we first discuss why an uncoupled control law needs higher performance

margins, then we consider the advantages and disadvantages of using a fully centralized

control law, particularly for the feedback loops, and finally, we discuss why the best

solutions for the feedback and feedforward control laws may be quite different.

As described in the introduction of Section IL in comparison to an uncoupled control law,

an integrated control law can improve the performance of a coupled open-loop system. In

this context, improved performance is not simply more accurate tracking of input

commands although that is certainly one of the important performance criteria. We mean

that both the feedforward objectives (command tracking, transient response, .etc) and the

feedback objectives (stability, noise attenuation, disturbance accommodation, etc.) can be

improved by the appropriate use of an integrated control law.

In this work, by an integrated control law, we mean one which contains some coupling

between some of the subsystems, but not necessarily all of the subsystems. In other

words, while a centralized full-state feedback (or output feedback) control law is an

integrated control law and an uncoupled control law is not, most integrated control laws

will be in between these two extremes and contain only a limited amount of coupling

between a limited number of subsystems.
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Coupling as Disturbance

In the preceding paragraphs, we have discussed the advantages and disadvantages of using

a fully centralized control law (e.g., a full state feedback control law with or without a

Kaiman filter) as the integrated control. Now consider the implications of an uncoupled

control law.

The usual approach used in many designs is to ignore the coupling among subsystems and

obtain control laws for each subsystem. This, of course, results in an uncoupled control

law. The implication of this approach is to interpret the coupling among the various

subsystems as disturbances.

This can be seen more clearly by considering equations (29) and (30) of the problem

formulation. When designing separate control laws for each subsystem, the designer

automatically considers the coupling terms in the summation sign as an independent

disturbance rather than a coupled signal with its own modes. More often, the designer

does not even include these terms in the design model, but simply assumes that it is not

present. In other words, the terms in brackets below are either eliminated or viewed as a

disturbance.

I L
+r j

j=i
j_

(29)

Y._k = C_ xit + xy t + u._t

L,':::
(30)

If the coupling terms are not in the design model and, therefore, are not used in the control

law directly, but are present in the real system, their impact will be to degrade the

performance of the closed-loop system. Therefore, the designer must increase the

performance margins for the uncoupled design beyond the usual level. By performance

margin, we mean a margin for each design objective for both the feedback and the

feedforward control laws. For example, the feedback system must have a higher stability

margin, say a phase and gain margin in each feedback loop. Therefore, one of the most

23



important implications of using an uncoupled control law is that the performance

margins must be increased to accommodate the coupling terms as pseudo-

disturbances. Even then, the actual performance (e.g., command tracking error, noise

attenuation, etc.) cannot reach the level possible with an integrated control law.

Centralized or Integrated

Since a fully centralized control law (e.g., a full state feedback control law with or without

a Kalman filter) can improve the performance of the integrated open-loop system, at first,

this may seem like the best approach to integrated control design. However, for. practical

systems of some complexity which usually also contain various types of nonlinearities,

there are some disadvantages to the use of centralized control laws.

One of the disadvantages of a fully centralized control law is its complexity of the

control law itself and the complexity of the closed-loop system. For high order

systems with multiple high order subsystems, even the implementation of the control law

and testing/validation of the control sol,rare on the flight computer can be a difficult task.

More importantly, a fully centralized control law feeds every subsystem variable to every

subsystem control. In other words, even subsystems which are only coupled to a

negligible degree, will be coupled further through the control law. This type of coupling

of essentially uncoupled systems, or of essentially independent variables, is likely to

produce complexity without a corresponding significant benefit in performance. However,

by coupling essentially independent modes of otherwise independent subsystems, we may

be introducing unnecessary dependencies between subsystems. For example, undesired

nonlinear behaviour or high noises in one subsystem could enter all the other subsystems.

Furthermore, most physical systems of practical importance contain significant

nonlinearities which include varying pararaeter values, limiters, rate limits, saturation, etc.

When implementing such real-life systems, it is vital for the designer to fully understand all

the implications of the control law's behaviour under many scenarios, particularly under

scenarios in which the nonlinear regions of the subsystems have been entered. When one

considers that each subsystem may have completely different regions of nonlinear

behaviour, the bounds of simple linear analysis are reached quickly. When one also

includes safety considerations under common subsystem failures, it becomes clear that
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simplicity is an often misunderstood but very important virtue in control system

design. Introducing complexity without a significant benefit should be avoided

Finally, subsystem validation is an important part of the procedure before a flight test to

ascertain the integrity of all the subsystems under the various circumstances of flight. If

the closed-loop subsystem is coupled to all the other subsystems, it may loose its intrinsic

characteristics. For example, the subsystem inputs may now come from some usually

unrelated subsystem. The validation and testing of the subsystem becomes more

complicated. An established testing procedure may not always be available for highly

complex situations. Thus, the benefits of the added complexity must be sufficient to

overweigh the disadvantages introduced in the process.

Considering the various advantages and disadvantages of integrating the control law, it

seems clear that a compromise in which some, but not all, the subsystems and variables are

coupled is the best approach. In particular, for feedback control, the guiding principle

may be to avoid coupling the subsystems except where a distinct improvement can

be obtained.

We consider theimplications of the discussion above for the feedforward and the feedback

control laws in the following section.

Different Strokes...

In this section, we discuss the type of integration that is most suitable for the feedback and

the feedforward control laws within the SOFFT context. We think that the feedback

control law should contain limited cross-coupling among the subsystems, while the

feedforward control law is best centralized. Because the feedforward and feedback

control laws have completely different objectives, we arrive at different solutions for

the two control laws. Thus, we have different solutions for different objectives.

We will first consider the feedback control law. Recall that the major objectives of the

SOFFT feedback control law. are to provide stability, noise attenuation, disturbance

accommodation and robustness of these characteristics while the feedforward control law

is trying to track the input commands. All the disadvantages discussed in the previous
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section apply to the feedback control law" complexity of implementation, subsystem

validation difficulties, understanding behaviour in nonlinear regions, etc.

Because of all these reasons, we think that the best approach to the feedback control

design is to introduce coupling only among variables which are already coupled. H"

the variables and the subsystems are already coupled, the extra coupling produced by the

control law does not really add new complexity since the designer will have to understand

the coupling between the subsystems anyway. On the other hand, since the variables and

subsystems are coupled, the control law is likely to achieve better performance when it is

not restricted.

Since the open-loop system model for the integrated system ((29), (30)) has been

augmented into the same form as the single or centralized system equations ((1),(2)), the

integrated feedback control formulation follows precisely the same procedure until we are

ready to introduce the coupling constraints.

For the PIF (Proportional-Integral-Filter) control structure that we are considering the

feedback control law has the form

(27)

However, now each vector and matrix is an augmented version of the original case. To

constrain coupling between any two subsystems through the control law, we simply must

constrain the corresponding elements of the augmented gain matrix, K, to vanish. Thus,

no communication link will be present between the corresponding variables of the

subsystems involved.

While setting the desired elements of the gain matrix to zero formulates the problem to be

solved, note that the Stochastic Output Feedback algorithm [3] does not provide for this

type of constraint in the optimization algorithm. Therefore, we must develop an output

feedback algorithm which can optimize the feedback gain matrix subject to the constraints

set above. This problem will be addressed in greater detail in Section rtl both for time
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invariant or single model problems, as well as for the multi-model case with a variable-gain

matrix for potential application to nonlinear problems [5], [1].

Now, consider the feedforward control integration problem. In the SOFFT methodology,

the main feedforward control objective is to produce the desired system response to the

input commands by tracking the command model outputs with no noise or disturbance

present. It is important to note that the feedforward control law does not have any

effect on the dosed-loop system stability. This can be easily verified by observing, say

in Figure 2 or 3, that the feedforward control law is in series with the closed-loop plant.

Thus, as long as the feedforward control law itself is stable, it does not change the stability

characteristics of the closed-loop plant even as the plant parameters vary :or other

nonlinearities occur.

Therefore, for purposes of understanding the stability of the system, the complexity of the

feedback control law makes the analysis of stability and its various robustness criteria

more complex; however, the feedforward control law does enter this difficult part of the

analysis.

Similarly, by the definition of the feedforward control problem in the SOFFT context, the

feedforward control law leaves the objective of noise attenuation to the feedback control

law. The feedforward control law uses only pilot input commands, but has no access to

the measurements obtained by the sensors. Accordingly, it cannot attenuate the random

noises which enter the system. Thus, the feedforward control does not contain any noise

in its variables except for computer round-off errors which are occurring in the flight

computer on board. In most of the computers used today, these noise levels are

negligible. Therefore, introducing unnecessary noises from one subsystem to another is

not a consideration in the feedforward control law.

It should be noted that the validation of plant subsystems can be performed irrespective of

the type of feedforward used. As long as the feedback control is designed in a manner

that maintains the identity of a subsystem, the feedforward subsystem inputs coming from

u_ and y_ to that subsystem only can be used in the validation.

The accommodation of random or known disturbances is left: to the feedback control law

which has access to the measurements and can feed them back to ensure that the system is,
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in fact, where it ought to be. The feedforward control law does not attempt to

accommodate disturbances. As discussed in a previous section, ignoring the coupling

among subsystems corresponds to treating them as unknown disturbances. If the coupling

among the subsystems is neglected in the design plant model, the feedforward control law

will generate the wrong feedforward control and measurement vector sequences, u_, and

y_, respectively, which is its main objective. In other words, the desired response to

input commands will not be generated correctly. It will then be necessary for the feedback

control to try to correct the tracking error due to the coupling of the subsystems in a

reactive manner.

Since generating the desired system response to input commands is the main objective of.

the feedforward control law, it seems that a significant benefit will be lost if the coupling is

omitted. Therefore, we recommend using the centralized perfect tracking

feedforward control law. Because the computation of the perfect tracking feedforward

matrices is so straight-forward, it is hard to see many cases where this would produce any

of the disadvantages present for the feedback control law. However, in cases where

ignoring the subsystem coupling produces a benefit in the feedforward control, this can be

easily accommodated using the SOFFT feedforward for each subsystem, thus obtaining an

uncoupled feedforward control law.

The formulation of the integrated feedforward control law is the same as the one described

Section II.A. 1.

C. INTEGRATED FEEDFORWARD CONSIDERATIONS

While we have developed a promising approach to integrated control using the SOFFT

philosophy for feedforward and feedback, some questions about the form of the open-loop

system still remain. The first question is related to the measurements. While many sensor

outputs can be described as linear combinations of the state, others require the use of the

control as well as the state. We would like to include such control-dependent

measurements in the formulation of the integrated SOFFT control problem.

The other question that deserves some attention is the stability of the feedforward control

law when the open=loop system is unstable; i.e., the question of static instability for the
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feedforward control. The feedback control stability has been studied extensively. The

feedforward stability for unstable open-loop plants will be investigated for the integrated

control problem.

1. Control-Dependent Measurements

Consider a sampled-data system; i.e., a continuous time system which witl be controlled by

a digital control system. Suppose that the system has control-dependent measurements of

the form

y=(t)=C=x(t)+D, ux(t) (36)

where t denotes time and the measurement noise term has been neglected so as to

concentrate on the problem at hand.

While most measurements can be expressed without the use the control vector, some

sensors measure a linear combination of the state and control vectors. These are usually

sensors which measure an acceleration, a velocity or a force or moment. For example, the

output of an accelerometer is a control-dependent measurement. In the example used in

Section IV, we will use an accelerometer along the forward stability axis which requires

the control vector. Accordingly, we will need to find a way of accommodating control-

dependent measurements. One approach is given in the following.

The standard sampled-data formulation [10] assumes that the control remains constant

over the sampling period, At.

u_(t)=u_,, tk=kAt<_t<(k+l)At=tk+ _, k=0,1,2,--- (37)

Let t_ denote the time at which the k th measurement is sampled. Thus, the measurement,

y= (t_), is obtained at time t_. At this time, we can start to compute the feedback vector

which is usually obtained by multiplying the measurement vector by the feedback gain

matrix. Once the flight computer computes the complete control vector, the control

values can be sent to the control actuator at time
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t k = t: + Ac = k At (38)

where Ac denotes the amount of time required by the flight computer to compute the

control vector, usually in the order of a few milliseconds. Until the new control is sent to

the actuators, the sampled-data commands the previous control vector, u_,__ .

From (38), it is clear that t_ < k At . Thus, when the/c th measurement is obtained, the

control vector is u___ ; i.e., the control corresponds to the previous sampling instant. In

mathematical form,

y.. = y_(t[,)=Cxx(t_,)+Dxux(t[,)=Cxxt +Dxu_t-, (39)

Therefore, for sampled-data systems, control-dependent measurements of the form shown

in (36), take the following form when they are discretized.

y.+ = cx x++ z)xu ,_l (40)

If the original measurement was corrupted by noise, the discrete measurement will also be

corrupted by a corresponding discrete noise process.

Now, we will embed a sampled-data system with control-dependent measurements into

one without a dependence on the control vector. We achieve this by augmenting the state

vector by the previous value of the control vector as follows. Define the vector

/'/¢ m Zg__ 1
(41)

Now, augment the state equations in the plant (1) by (41) using the augmented state

vector shown below.

"-,-,)=("o,,..., o,,,,.,.,,,.,),,.-,-(o-)(42)

Now, if we express the control-dependent measurements in (40) in terms of the

augmented state in the system of (42), we obtain
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kr_
(43)

where we have included the measurement noise in the formulation.

In (42) and (43), we have expressed the system with control-dependent measurements in

the form of one which the measurements depend only on the state. Thus, the control-

dependent measurement problem has been embedded in one of the form of (1) and (2).

Therefore, all the results we have developed in Section II apply equally to the case of

control-dependent measurements.

2. Unstable Open-loop Plant

As engineers have explored advanced aircraR new aerodynamic profiles, experimented

with new aerodynamic control surfaces, tried forward-swept wing concepts and eliminated

the tail section of the aircraft, the static stability of the aircraR has become a variable

which depends on the particular aerodynamic design of the aircraft. Several advanced

aircraft are unstable, at least in certain flight conditions. In particular, the modified F-15

SMTD aircraR which is used as an example in Section IV is open-loop unstable at the

flight condition corresponding to 30 ° angle-of-attack.

In this section, we briefly investigate conditions under which the SOFFT feedforward

control law stabilities an open-loop unstable plant model shown in Figure 3. We will

consider the "optimal tracking" and "perfect tracking" eases in that order.

Referring to the feedforward cost function given by (9) in Section II.A. 1, recall that when

the matrices Q_',R_" vanish, the tracking error can also vanish resulting in the perfect

tracking case. If these matrices do not vanish, then the tracking error can only be

optimized to obtain the smallest level of error attainable for that cost function.

Lemma 1. For the optimal feedforward control problem defined in Section I1.A.1, if

the open-loop system is stabilizable and detectable, then the SOFFT feedforward control

gain K" stabilizes the open-loop system if the cost matrices Q? ,R? are both positive

definite.
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The proof of the lemma follows directly from Theorems 6.30. and 6.31. in [12], p. 497.

It is clear that for a large class of open-loop systems, the optimal tracking feedforward

control will stabilize the system even if it has static instabilities. The case of the perfect

tracking feedforward control is more complicated. However, the following result applies.

Define the closed=loop system matrix as shown below.

(44)

l.emma 2. For the optimal feedforward control problem defined in Section II.A.1,

where the cost matrices Q_ ,R_ are both null, the optimal control will stabilize the open-

loop system if the system ( H_ ,-_ ,Ix ) is output stabilizable and [H_ F_] is invertible.

Proof" The proof follows directly from Theorem 1 in [3], p. 9, by noticing that the

impulse response goes to zero, since

r = u, r,]-' r, = o, k>_x (45)

Thus, the impulse response matrix for this system converges to 0 as k gets large since it is

null. Therefore, the closed loop system matrix for the perfect tracking case q), is stable.

The class of open-loop systems covered by these conditions is less clear. From our

experience, it is quite a large class. However, we are not sure that it covers all systems of

practical importance. It should be noted that, whenever necessary, one may add very

small cost matrices Q_",R_" to include the class defined by Lemmal.
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III. INTEGRATED/CONSTRAINED OUTPUT FEEDBACK

CONTROL

In this section, we will formulate and develop an algorithm for the integrated or

constrained stochastic output feedback control problem. The formulation will be within

the SOFFT context; i.e., we formulate a problem with a feedback control law that will

cooperate with a SOFFT feedforward control law. However, the algorithm developed for

the feedback control gain optimization is applicable to any discrete output feedback

problem.

We will first consider the single model or time-invariant problem. Then we will extend the

formulation and the algorithm to the variable-gain output feedback control case to

accommodate nonlinear problems with wide variations in the operating range.

A. TIME--INVARIANT PROBLEM FORMULATION

The problem formulation of the integrated output feedback control problem was started in

Section II.B. 1 in the process of developing a SOFFT approach to the integration of the

control law. Here, we wiU formulate the complete problem to find the optimal solution to

the problem and obtain an algorithm to compute the gain matrices which define the

optimal control law.

Consider a system composed of L subsystems some of which may be coupled in their

dynamics and their measurements. Note that while some measurements may contain state

variables fi'om more than one subsystem, the control variables and state variables can

belong only to one subsystem. This does not apply to the measurements which may be

considered part of more than one subsystem. However, care must be used in such cases
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since the number of measurements increases and the measurement matrix loses its full rank

property.

Now, let the ith subsystem state vector at the kth sampling instant be denoted by x,,. Let

the ith state vector, x_, have the dimension n_. Similarly, let the ith subsystem

measurement vector, y=,, have the dimension ny. The ith subsystem model can be

expressed in the form

L

xi,÷,=_=xi,+F.._u.,,+__._{_xj,+F_u_,}+w=,, i = 1,2,---,L (29)
j=l

L

j=l
j,ti

i= 1,2,...,L (30)

where the plant and measurement noise sequences are assumed to be zero mean white

noise processes uncorrelated to each other and to the initial condition vectors.

The coupled set of subsystems can be integrated into a large single system of the usual

form we have been considering in the previous sections; i.e.,

xk+_ = _ x k +I x u_, +w_, (1)

y.. =C=x k + oxt
(2)

For completeness, note that the integrated state and measurement vectors can be obtained

by augmenting the subsystem state and measurement vectors as shown below.

"_k --

Xlk

_'2k

_'LIt

Y.dr --"

Yxlk 1

Yx2k

Y_,,

(31)

The integrated control vector, as well as the plant and measurement noise vectors, can be

obtained in the same manner.
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_xk

I Nxl k

-- I ux2ki

\u,,r k

I Wxlk 1

L_a, --"

Uxl k 1

Ux2 k

O,.tt

(32)

The integrated open-loop system matrices in (1) and (2) can be expressed in terms of the

subsystem matrices in (29) and (30) as follows.

f _)xil (I)x12 "'" (1)xlL

_ = _2_ _ (33)

f

i 1"_11 L12 "'" I"xlL

L---- I"x2! I"x22

: :

,F_ F,.=

(34)

... 1C= C=

,C.,._ C=

05)

Thus, the integrated system can be expressed as a standard discrete linear system as given

in (1) and (2) as shown above. Accordingly, the SOFFT developments described in

Section H.A. 1 for both feedforward and feedback control apply to the integrated system.

Without repeating all of the equations in this section, we will consider a feedback control

law with the PIF structure as described in equations (15) - (21).
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The state, measurement and control vectors of the integrated system shown above can

now be augmented to include the control and integrator vectors of the PIF structure as

follows.

)
: I
• |

I

= u,* = u_,_k i (47)

lit

• • .]

The integrated and PIF augmented system can now be expressed as

+w, (48)

= C _'k + vk (49)

where the new control vector, vk , is defined by (19) as the rate of change of the original

control position.

For the integrated control problem we are formulating, it is necessary to constrain the

control vector so that some variables are not fed back into certain subsystems. This will

allow the designer to choose which subsystems and variables to couple and which not to

couple within the feedback control law.
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First, we constrain the control vector to use only the measurement or feedback vector

including internally generated variables such as the control position vector and the

integrator vector. This constrains the control to the measurement vector in (49) as the

standard stochastic output feedback problem.

K.K,) (50)

Showing the details of the subsystem partitions results in

¢.

Yxl t

l'i x 1 k

Ilk

(5_)

where K_, K w. and Klu have the dimensions n_ x nyj,n_ x nuj and n_ x nl,, respectively.

Equation (51) describes the integrated control feeding back the specified feedback vector

for the PIF structure. However, to avoid coupling the subsystems, or more generally, to

avoid coupling a feedback variable to a control component for whatever subsystem, it is

necessary to place additional constraints on the form of the control law. We can achieve

this result by constraining certain elements of the feedback gain matrix to vanish; i.e., the

control designer sets certain gain elements to zero.

For example, note that if we constrain the partitioned gain matrices K., K. and Kj

to be block diagonal, that is we constrain the off-diagonal blocks to be zero, the

resulting feedback control system will be completely uncoupled. Since, the only

nonzero blocks in the gain matrix are on the diagonal, each subsystem control will have

the form

%,, = -K=, y.,j, - K,,_ u-=k- K_ _k, i = 1,2,..-,L (52)

37



Each control feeds back only the measuremems related to its own subsystem and,

therefore, the control law is uncoupled. On the other hand, if the designer wants to allow

some coupling between two subsystems, he simply does not set the corresponding blocks

to zero.

In fact, note that the coupling through the feedback control law can be one-sided. In

other words, we can feed back measurements from subsystemj to subsystem i by allowing

some gains in the blocks K,_ ,K w. or K_# to be nonzero; i.e., by not constraining them to

be zero. However, we do not necessarily have to feedback measurements from subsystem

i to subsystem j. Thus, subsystem i may be influenced by subsystem j; however,

subsystemj need not be influenced by any other subsystem.

It is important to note that we can distinguish between the particular variables within the

subsystems. Thus, we may feed one or two variables into a given control component in

some subsystem. This is achieved by setting all the gains except the desired ones to zero.

l_mally, note that it is not sufficient to set the off-diagonal blocks in K, (the sensor

feedback gain partition) to zero if you want to avoid coupling subsystems. You must also

set the off=diagonal blocks in K, and in K l to zero to avoid coupling the desired

subsystems through cross-terms in integral feedback or control feedback.

A simple way in which we can set specified elements of a matrix to zero is by defining the

following element by element multiplication of two matrices which we shah denote by "×'.

We define the ij element of the matrix product as the product of the ij elements of each

matrix. Thus, let the matrices K and Z have the same dimension. Then, the elements of

their x-product is given by

[g x Z], j -- g, j Z,j (53)

Now, define the matrix Z to have elements which are either zero or 1. If you want to

constrain an element of the gain matrix K to zero, then set the corresponding element of

the matrix Z to zero while leaving all its other elements set to 1. Then, the product KxZ

will have zero's for the specified elements while the others will be unchanged.

Select the feedback cost function
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J(X) tim 1E{_=o-r -)= X_+, Q,_k÷1 + v[ R_k (54)
u-_ 2(N + 1)

Then the optimal control problem for integrated/constrained output feedback can be posed

as follows. Find a stabilizing control gain matrix K which minimizes the cost function in

(54) subject to the constraints in (48), (49), (50) and (55).

K = KxZ (55)

The constraint in (55) requires that the allowable gain matrices must have zero's: wherever

Z has zero's as specified by the control system designer. Thus, we have an additional

constraint beyond those in the standard output feedback problem. We will consider the

optimization of this problem in the following section.

B. ALGORITHM DEVELOPMENT

With the exception of the constraint in equation (55), the problem posed in the previous

section was solved in [3]. A similar problem posed for continuous time, constant gain

control laws is treated in [13] using a different approach. Here, we will follow a similar

approach to the one used in [3 } and then extend this development to the case of the

variable-gain output feedback treated in [5].

1. Necessary Conditions

Following the approach in [3], let us define the set, S, of stabilizing gain matrices as

follows.

(56)

where p denotes the spectral radius of the matrix and q)(K) is the system matrix with the

loop closed by the unconstrained gain matrix, K, as shown below.
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O(K) = • - F K C (57)

For a stabilizing gain, the cost function shown in (54) is known to be finite. So if the

system is output stabilizable, S is not empty. However, we now have the further

constraint of (55) which zeros out certain elements of the gain matrix. Accordingly, we

need to define the constrained set of stabilizing gains which we denote by Sz •

Sz = IK _2_K x Z = K} (58)

If the set of constrained stabilizing gains, Sz, is not empty, then a finite cost exists and the

optimization problem posed is well-defined.

From Lemma 10 in[3] (pp. 19 - 20), the cost function is continuously differentiable on S

and the gradient of the cost function exists and is given by

8d'( ^ ^K)= P(K)KS(K)- F r P(K)C_S(K)C r ,
8K

K _ S (59 a)

Since S z is a subset of S, the expression for the gradient also holds on Sz . However, this

expression of the gradient shows nonzero gradient values in all locations; i.e., even if an

element of K has been set to zero, the gradient would show as a nonzero value at the

corresponding location. The reason is that this expression does not take into account that

the gain element is fixed at zero so that the derivative of the cost with respect to it is also

zero. We want to maintain the matrix form of the gradient. Thus, we are setting the

corresponding elements to zero. Another formulation could leave those elements

completely out of the gradient at the expense that the matrix form would be lost.

For the integrated/constrained stochastic output feedback problem, the gradient can be

expressed as

j(K) = ^^ JP(K)KS(K)-F r P(K)@S(K)C r xZ, K _S z (59 b)
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where j(K) denotes the constrained gradient and the matrices used in the gradient are

defined by the Lyapunov equations below.

P(K) = q_(K) r P(K)@(K)+ C rK r RK C + Q (60)

S(K) = _(K)S(K)_(K) r + F K V K r F r + W (61)

A

P(K) = F r P(K) F + R (62)

A

S(K) = C S(K) C r + V (63)

Thus, using Lemma 3 below, we can obtain the necessary conditions for the

Integrated/Constrained Output Feedback Problem by setting the gradient to zero.

A A

P(K)KS(K) xZ= [Frp(K)_S(K)Cr]xz , X _Sz (64)

Therefore, the optimal gain, K, must satisfy the necessary conditions shown in (64) and

any gain that satisfies (64) is a critical point of the optimization problem.

2. Constrained Algorithm

Whereas we know that the optimal gain must satisfy the necessary conditions, solving (64)

directly is not an easy matter. Furthermore that would only give us a critical point of the

cost function. To solve the op "tmaization problem, we must find a gain that minimizes the

cost function. Aecordingiy, we use that idea to develop the algorithm. In other words,

given a starting gain, we will try to fred a new gain which reduces the cost function

and keep doing that until some convergence criterion is met. At each iteration, we

shall add an increment to the gain going in a direction which reduces the cost.

Recall the incremental cost which was instrumental in developing the algorithm in [3].

We will use that concept in the current problem as weft.
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A J(K, AK)=J(K + AK)- J(K)

= _tr 2AK r P(K +AK)KS(K)-Fr P(K + AK)_S(K) Cr

^ ^ )}+M_2r p(K+MOM(S(K , K _S,(K+_K)_S

Rearranging the terms in (66), it can be rewritten as ([3], p.22, Eq. (80))

AJ(K, AK) = _tr 2AK r 8J AK r---_(K)+ P(K)AKS(K)+02(AK)

(65)

(66)

(67)

Before continuing with the development of the eo_ed algorithm, we need to establish

some elementary properties of the matrix product x defined in(53).

Lemma 3. Let A, B and Z be matrices of appropriate order.

be l or O. Then,

AxZ=ZxA

(A+B)xZ= AxZ+BxZ

Let all the elements of Z

(68)

(69)

(70)

(71)

(72)

(73)

ZxZ=Z

(A x Z) r = A r x Z r

Proof- The assertions in (68) - (72) are immediate implications of the defimtion in

(53). We will only show the validity of (73) here.
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_,k i,k

(74)

which shows the desired result.

Suppose that we have a stabili_ng gain, K, that satisfies (55). We want to find a direction,

d(K), in which the cost can be reduced. Now, consider the direction matrix

A 1d(K)=- K)-' j(K)S(K)-' xZ , K _S z (75)

Thus, we will look for a new gain along the direction d(K). If K_ is the gain for the ith

iteration of the algorithm, we define the next gain as

K_+, = K_ +ctd(K_), i = 0,1,2,--- (76)

where a is a positive number greater than zero. From (67), it is clear that if the first term

in the trace is negative then the cost along the given direction will start by going down.

This is due to the fact that all the other terms in the cost function are of second order in a.

If a is selected to be small enough, then the first order term will dominate the incrememal

cost and the next gain will reduce the cost. Thus, consider only the first term in (67) to

determine its sign.

(77)

= -air P(K) -_ j(K)S(K) -_ xZ --_(K)
(78)

Using the properties of the x-product given in Lemma 3, and manipulating
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ttA 1 T
From (59), note that the last term in (79) is the constrained gradient.

manipulating the transpose, we get

tr AK r 8J = -cttr K)-' j(K) r S(K)-' j(K < O,

(79)

Substituting and

Va > 0 (80)

Therefore, the direction selected in (75) is, in fact, a descent direction which will reduce

the cost function. Thus, selecting a small enough by trial and error will produce a new

gain to be used as the next gain in the iterations of the algorithra.

We think that it is possible to prove the convergence of this algorithm following the same

arguments as in [3]. However, this is beyond the scope of this investigation and will not

be pursued here. Our experience with this algorithm indicates that it is numerically stable

and convergent.

We will give the detailed steps of the algorithm for the more general variable-gain problem

which is investigated in the next section.

C. EXTENSION TO VARIABLF.,-GAIN SYSTEMS

The Variable-Gain Output Feedback Control methodology [5] was developed to

accommodate nonlinear systems with large variations in the operating range. This

methodology allows the feedback gain matrix to vary with selected system parameters so

that the control law can adapt to the changing dynamics of each operating point.

The Variable-Gain methodology was extended in [1] to allow the control system to use

the SOFFT approach with both feedforward and feedback control laws. Let p represent

the parameter vector which specifies the operating point of the system. Thus, the system

matrices now vary with the parameter vector.
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x,+_= O.(p) x, +r'x(p) u. +w_ (81)

Yn = Cx (p) x k + u._ (82)

Using the PI_" feedback structure as shown in(17) - (27), and using the same partitioning

for the coupled subsystems as described in Section M.A, we results in the design model

X,+,=a,(p)X,+r(p)_ +w, (83)

(84)

The difference fi'om the time-invariant ease treated earlier is that now the control law can

also vary as the system moves through different operating points. Thus, we allow the

control gain matrices to vary according to the parameter vector as shown below.

I (85)

For a variety of reasons too lengthy to discuss here, we place the constraint of a linear

relationship between the control gain matrix and the parameter p.

q

K(p)= K 0 + _Pi K_ =K G(p) (86)
i=1

where _ is an augmented gain matrix defined as follows.

(87)

G(p) = 'I
p_I)

(88)
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We embed the variable-gain output feedback problem into the time-invariant or constant

gain problem by redefining the measurement vector.

Y_:= G(P)Yk = G(p)C(p) *k +G(P)Uk = C'(P) ffk + v't (89)

where the new measurement equation has the same form as before although it has a higher

dimension. However, with this measurement vector, the control law can now be

expressed as a constant gain feedback control law. Substituting (86) and (89) into (85),

note that

(9O)

Now we have a constant gain control law trying to control a system which can vary with

the parameter vector, p. Selecting a representative number, say M, operating points

IpJ,j = 1,2,---,M} to cover the system's operating range, we have a multi-configuration

output feedback problem with the cost function

M

J'(_) = '_"fjJ(K(pJ ),pj)

j=l

(91)

.](K(pJ),pJ)= run 1 E X_+, Q(pi).Xk+_ + _r R(pJ)_k (92 a)
N--_ 2(N + I) _

I A 13(K(p),p)= _tr(P(K(p)) IV(p)) +:tr K(p) r P(K(p)) K(p)V(p) (92 b)

where fj is the wdght attached to the jth operating point. Now, recall that for the

integrated/constrained variable-gain problem under consideration, we have the additional

co_t of setting specified elements of the gain matrix to zero. It is important to note

that for the variable-gain control in (86), to avoid coupling the desired subsystems, we

must zero out each gain matrix, K i , i = O,1,2,..-,q. Alternately, we must augrnem the Z

matrix used for the time-invariant case. Thus, the control gains must satisfy

K ixZ=K_, i=0,1,---,q
(93)
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or alternately,

KxZ=K

Z=(Z Z

(94)

(95)

To obtain the gradient for this case, we simply use the general expression (53) in [5] and

specialize it to our case.

8J'

j, fK)=7_-(K)xZ, K eS,.
,, F ^ ^ , ,l

= _fjp/[P_.(g)K(p')S(g)-r,Pj(K)q_,Sj(K)C,J

(96)

x z,_c es= (97)

j(K)=(jo(_) j,(K)"'" jq(K)) (98)

Integrated/Constrained Variable-Gain Feedback Algorithm

1. Embed the variable-gain problem into the MCC form by augmenting the gain matrix as

described above

2. Initialize parameters: Select initial stable gain to, ao, i = 0, Z, etc.

3. Initialize and save matrices. Forj = 1, 2, ---, ,A/I

(I):=(1)(pj) r;=r(pJ) c,=c(p j) C;=C'(pJ)=G(pJ)Cj (99)

Qj = Q(pJ) R; = R(p j) (ioo)

Wj =W(p j) Vj' =V'(pJ)=G(pJ)V(pJ)G(pJ) r (101)

4. Test closed-loop stability at iteration i using (102) for j = 1, 2, .-., M. If any

instability is found, go to 10.
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_jCi_) = _j -F,. _ C_ = #oj -rj _ G(pJ)Cj = _j -Fj K(pJ)Cj (102)

5. Solve the P and S Lyapunov equations below forj = 1, 2,---, M r

(lOS)

, TFT (104)

A

Pj(_.) = r r Pj(_.) rj + Rj (105)J

A

sj(_) = c_ sj(r_)c'. _+v; (lO6)
J

6. Compute the cost J'(_Z_) using (91) and (92 b). If the cost is not lower than last

iteration, go to 10.

7. Compute the integrated/constrained gradient j(K, ) using (96) - (98). If the gradient

norm is smaller than the convergence criterion, stop.

8. Solve for the variable-gain direction d(g, ) in

M A A

_fj Pj(_) d(T_.) Sj(_)=-j(_) (107)
j=l

If M= 1 (i.e., single model case), use Equation (75) to solve for the direction d.

IfM > 1 (i.e., Multi-Model or Variable-Gain (V-G) cases), use the Kronecker product

formulation given by (107 a).

.{A A (107 a)
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where ® denotes the Kronecker product and col denotes the column vector form of the

appropriate matrix. Solve for the direction by inverting the matrix in brackets or use the

approximation algorithm described in Equations (74) - (81) in [5], pp.30-31.

9. Zero out the direction and go to 11.

d(T,_)=d(T,_.)×Z (lOS)

10. Reduce step size a_ ; e.g.,

a,+,= 2 (109)

If step size is smaller than criterion, stop.

11. Compute new gain matrix and go to 4.

= + a, d( L) (110)

i.6..-i+l (111)

The algorithm given above is intended for the Integrated/Constrained Variable-Gain

Output Feedback Control problem. However, it also applies to the time-invariant or

constant gain problem when the number of models, M, equals 1 and the dimension of the

parameter vector, p ,is also 1; i.e., q = 0. Furthermore, this algorithm is also applicable to

the Multi-Configuration Control (MCC) problem described in [5].

Computing the direction in which to search for a lower cost is relatively straight-forward

for single model problems as seen from (75). However, for multi-model problems (107)

can be computationally demanding. An approximate solution can be obtained with

significantly less computational burden by approximating the Hessian as shown in [5]. On

the other hand, this may result in a more shallow direction for the search.
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D. FLOW CILKRT OF VARIABLE-GAIN (V-G) ALGORIT]B_
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IV. AN INTEGRATED FLIGHT AND PROPULSION CONTROL

EXAMPLE

The Integrated SOFFT Control approach developed in the previous sections was applied

to the design of an integrated flight and propulsion control system for the modified F-15

SMTD alrcraR to provide an example of the design methodology developed. Although

the methodology is applicable to both single model and multi-model variable-gain

problems, here we will only design a single model control at one flight condition. Clearly,

the Integrated SOFFT Control methodology is very general and has numerous applications

in a variety of fields.

A. AIRFRAME AND PROPULSION MODELS

The modified F-15 SMTD alrcrait model has an advanced propulsion system with thrust

vectoring capability and has aerodynamic canards to complement the usual assortment of

aerodynamic control surfaces. The aircraft has static instability in the longitudinal

dynamics at a flight condition of 30 degrees of angle-of-attack. It is open-loop stable at

the other high angle-of-attack flight conditions we have considered. Accordingly, we

select the flight condition for 30 degrees angle-of-attack at level flight in order to observe

the impact of the static instability on the methodology. From the results obtained in the

investigation, the methodology stabilities the open-loop unstable mode without any

noticeable consequences.

The thrust vectoring can produce moments in the pitch, yaw and roll axes. Thus, it has

three control components. These thrust vectoring components have very similar effects as

the aerodynamic control surfaces, namely, the stabilator, rudder and ailerons. In normal

operation, it would be counter-intuitive to command positive rolling moment with the
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ailerons while simultaneously commanding negative rolling moment with thrust vectoring,

thus canceling each other's effects. Accordingly, we select to combine the thrust vectoring

controls with the corresponding aerodynamic control surfaces. This reduces the number

of control components and reduces the computational load and avoids situations as the

one mentioned above.

The aerodynamic surface and thrust vectoring controls are shown in Table 1.

Table 1. Airframe Controls

._.

: 6s > degrees Stabilator + pitch down

6 o degrees Pitch Thrust Vectoring + pitch down

6 A degrees Aileron + rollright

6 a degrees Rudder + yaw left

8¢ degrees Yaw Thrust Vectoring + yaw left

6 5 _ degrees Roll Thrust Vectoring + roll right

Let u._ be the new or combined airfi'ame control vector (having three components) which

we will use in the plant model. Then the airfi'ame controls in Table 1 are obtained as

follows.

8_

:1 0 0

o o
0 1 0

0 0 .6

0 0 .9

/"lu_,x u.i = u_ (112)

U¢

The airfi'ame state vector is given inTable 2.
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Table 2. Airframe State Variables

Xl "-

t21

ql

OI

El

Pl

r I

,¢')

fl / sec speed along x s

degrees angle of attack

deg / sec pitch rate

degrees pitch angle

degrees sideslip

deg / sec roll rate

deg / sec yaw rate

degrees roll angle

In Table 2 and elsewhere, x, denotes the x stability axis. In a similar vein, the engine

controls were combined from a total of five components to the following three.

Table 3. Propulsion Control Variables

Ux 2 -"

1,000 lbs / hr

10ore 2

degrees

Fuel Flow

Exhaust Nozzle Area

Rear Compressor Variable Vane

The propulsion state vector and units are given in Table 4.
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Table 4. Propulsion State Variables

X2 --

IN, TI 1,000 rpm
N 2 1,000 rpm

HPC 1,000 R o

Low Rotor Speed

High Rotor Speed

Rear Compressor Metal Temperature

The state equations for the airfi'ame and propulsion subsystems are of the form

x I = A I x I +B I uxl +Bl' l u,1 (113)

x 2 = A 2 x 2 + B 2 ux2 + B_, u, (1 14)

The cross-coupling terms, the last terms in the equations above, are given by

Ull = Dp =

(115)

where F s and Dp are the gross thrust and the drag due to the engine. Substituting for the

cross-coupling terms and manipulating, the integrated continuous open-loop system can be

found as

X1 = AxH X1 +Axl 2 x 2 +Bxl I tlxl +Bxl 2 /4x2 (116)

x 2 = Ax21 x I +A.z 2 x 2 +B.. ux: (117)

The details of the derivation are given in Appendix B. It should be noted that several of

the system matrices in (1 16) and (1 17) are different than the ones in (1 13) and (1 14) (See

03-8) and 03-9) in Appendix B). Also note that the propulsion subsystem dynamics in

(117) do not have a term for the airframe controls although there is still some coupling

through the state vector even if small.
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The integrated system A_ and W_ matrices are shown in Tables 5 and 6, respectively

Table 5. Integrated System A s Matrix

1 2 3 4 5

1 -0.2201 -0.6139 0.0000 -0.4532 -0.0274
2 -0.0801 -0.2040 1.0000 0.0630 0.0030
3 -0.0849 0.4817 -0.2448 0.0000 -0.0030
4 0.0000 0.0000 1.0000 0.0000 0.0000
5 0.0000 0.0000 0.0000 0.0000 -0.1251
6 0.0000 0.0000 0.0000 0.0000 -24.8180
7 0.0000 0.0000 0.0000 0.0000 -0._008
8 0.0000 0.0000 0.0000 0.0000 0.0000
9 0.0000 0.0133 0.0000 0.0000 0.0136
10 0.0000 0.0076 0.0000 0.0000 0.0075
II 0.0000 0.0000 0.0000 0.0000 0.0000

6 7 8 9 10

1 0.0000
2 0.0000
3 0.0000
4 0.0000
5 0.5000

6 -0.7052
7 0.0150
8 1.0000
9 0.0000
I0 0.0000
Ii 0.0000

11

1 0.2598
2 -0.0285
3 0.0281
4 0.0000
5 0.0000
6 0.0000
7 0.0000
8 0.0000
9 0.4365

I0 0.3440
II -0.3846

0.0000 0.0000 0.6337 0.0804
0.0000 0.0000 -0.0695 -0.0088
0.0000 0.0000 0.0687 0.0087
0.0000 0.0000 0.0000 0.0000

-0.8660 0.1060 0.0000 0.0000
1.5406 0.0000 0.0000 0.0000

-0.2254 0.0000 0.0000 0.0000
-0.1086 0.0000 0.0000 0.0000

0.0000 0.0000 -2.5764 1.7038
0.0000 0.0000 0.0213 -1.5592
0.0000 0.0000 0.0175 0.0149
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Table 6. Integrated System B x Matrix

1

1 -0.4182
2 -0.1326
3 -3.4895
4 0.0000
5 0.0000
6 0.0000
7 0.0000
8 0.0000
9 0.0000
10 0.0000
11 0.0000

6

1 O. 0015
2 -0.0002
3 0.0002
4 0.0000
5 0.0000
6 0.0000
7 0.0000
8 0.0000
9 0.2151

10 -0.1431
11 0.0009

2 3 4 5

0.0000 0.0000 0.5901 -2.1013
0.0000 0.0000 -0.0647 0.2304
0.0000 0.0000 0.0639 -0.2277
0.0000 0.0000 0.0000 0.0000
0.0060 0.0813 0.0000 0.0000
3.8394 0.0031 0.0000 0.0000

-0.1895 -3.7094 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.9496 2.3631
0.0000 0.0000 0.5476 0.7002
0.0000 0.0000 0.0019 -0.0068

It shouldbe noted here that the propulsion control vector and, therefore, the B x matrix

was modified for the final design example. This new control vector and the motivation for

the change are described in the next section

Finally, the integrated system measurement or feedback vector was selected as shown in

Table 7. Note that the first six measurements may be considered to be airframe

measurements with the remaining four measurements corresponding to the propulsion

system.However, both setscontainvariablesfi'omthe othersubsystem.
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Table 7. Integrated System Measurement/Feedback Variables

Yx =

a g$

¢x

q

P

r

Nl

HPCT

SMttC

fl / sec 2

degrees

deg / sec

degrees

deg / sec

deg / sec

1,000 rpm

1,000 rpm

1,000 R °

%

acceleration along x s

angle of attack

pitch rate

sideslip angle

roll rate

yaw rate

low rotor speed

high rotor speed

rear compressor metal temperature

rear compressor stall margin

Finally, although we have treated the problem as one with two subsystems, namely the

airframe and the propulsion subsystems, it is possible to consider it as a problem with

three subsystems: the longitudinal airframe dynamics, the lateral airframe dynamics and the

propulsion subsystems. In fact, the most common integrated control problem in flight

controls certainly has to be the longitudinal and lateral flight control systems. Although

usually treated separately, these two subsystems are coupled when the aircraft has a

nonzero roll angle.

B. FEEDFORWARD CONTROL DEVELOPMENT

In this section, we will discuss the formulation and selection of the command model for

the integrated system. However, most of the comments made here apply to centralized

optimization problems as well. In particular, we will discuss the selection of the number

of variables which should be commanded for best results in the next subsection.
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1. Input Command Considerations

The first feedforward design question is the selection of the pilot input commands. This

selection is often the one mentioned to describe the overall control system. For example,

we will say that we have a "pitch rate command system" or an "alpha-command system"

or an "attitude rate command system" meaning that the pilot commands those variables.

It is generally accepted that we can have as many commands as the number of independent

control variables. While this may be true in a strict sense, it is not always the most

reasonable or desirable number to select as we shall discuss in the following. Other

considerations may lead the designer to select a different number of input commands.

From the integrated model described in the previous section, the overall system order is 11

and the number of controls is 6. Therefore, we started out by selecting 6 input commands.

Not all of the commands need to be input by the pilot as real-time inputs. Some

commands may be computed according to given formulas or algorithms. In other cases,

some input commands may simply be constant commands.

Some examples of input command vectors are shown below.

H, =

q+.2a

P

r

_C

f • •

q+.2a

a=

P

r

N1

N2

m

q+.2a

N:

P

F

SMF

_4ttC

(1is)

All of the choices above resulted in very high cross-gain values fi,om the longitudinal

airframe state variables to the propulsion control variables. Several other selections were

tried to eliminate various possible causes for such high gains. For example, decoupling the

engine dynamics fi'om the airfi'ame by setting A,2 _ to zero produced no significant change.

Decoupling the input command vector itself by commanding 3 airfi'ame and 3 engine

states helped to reduce the cross-gains somewhat. However, the gains fi_om the engine
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states to the engine controls were still high. The last result, coupled with the previous

ones, pointed to a new approach to the problem.

Our hypothesis was that the reason the gains are very high is due to the possibility of

commanding the three engine state variables (or an equivalent set of variables) to

unreasonable, mutually opposing values. For example, it is possible to command N_ to

high rpm's and simultaneously command N 2 to lower rpm's while commanding HPCT to

remain constant. The input command selections above make this a possibility even if such

a command profile never actually occurs. Therefore, the control law must be able to

achieve unrealistic commands. And it doesf But at the expense of very high gains. Of

course, the propulsion system is not designed to track such commands; it is designed to

produce thrust, a single variable.

Thus, even though, strictly speaking, it is possible to command as many variables as the

number of controls, it may be totally unreasonable to do so. One must take into account

the characteristics of each subsystem before selecting the input command vector. Just

because it is possible to command many variables does not mean we are required to

do so. It is of interest to investigate further the conditions under which such situations

occur. However, such an investigation is beyond the scope of the present study.

To prove the hypothesis above, we reformulate the propulsion problem as a one-control

one-command problem. Consider the single component pseudo control u, defined by

ux2 = G: u, (119)

where Uxe is the propulsion vector in Table 3 and G2 is a 3x 1 matrix to be determined.

Let us choose G2 so as to minimize the E-norm of the feedforward gain matrix K_. After

considerable work, it is possible to show that the minimum occurs for

l'0G 2 = ¢ 3.34 (120)

_,0.21J

where c is a arbitrary scalar. We do not show the derivation here as it is not relevant to

the problem under consideration. Sul_ce it to know that using this vector with c equal to
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1, together with the input command vector shown below, immediately solved the problem

of very high gains reducing K_ by several orders of magnitude. We consider the

hypothesis proved heuristically by finding a solution which dramatically reduces the gain.

I q+.2ct)"

(121)

Accordingly, we select eq. (121) as the pilot input command vector for this example.

However, minimizing the norm of the gain matrix is not necessarily the best way to select

our pseudo control. In particular, the choice of (120) results in a negative value for the

(1,4) dement of B x . Thus, a positive step in the pseudo control would produce an initial

tendency to reduce the thrust and the forward acceleration. This tendency would reverse

itself after the transient response dies down. To avoid this counter-intuitive initial

tendency, we modified the value of G 2 as shown in (122) so that the pseudo control would

produce the desired initial response without introducing large moments in the pitch rate

(q) and angle-of-attack (cz) equations. The resulting B x matrix is shown in Table 8.

(122)

2. Command Model or Flying Quafities

Given the pilot input command vector, we need to select a command model which

produces the flying qualities desired by the pilot. In the SOFFT methodology, the

command model determines the response of the aircraft dynamics to the pilot's input

commands. In this example, we select the command model to produce specific types of

responses for each component of the vector in (121).

For the longitudinal and lateral dynamics, we will use [14], pp.511 - 525 as a guide in

selecting the corresponding command models. For the propulsion related forward
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Table 8. Integrated System Modified B x Matrix

1 2 3 4

1 -0.4182 0.0000 0.0000 0.2605

2 -0.1326 0.0000 0.0000 -0.0286

3 -3.4895 0.0000 0.0000 0.0282
4 0.0000 0.0000 0.0000 0.0000

5 0.0000 0.0060 0.0813 0.0000
6 0.0000 3.8394 0.0031 0.0000

7 0.0000 -0.1895 -3.7094 0.0000

8 0.0000 0.0000 0.0000 0.0000

9 0.0000 0.0000 0.0000 6.3768

I0 0.0000 0.0000 0.0000 2.7474

11 0.0000 0.0000 0.0000 0.0016

acceleration dynamics, it is not clear that a flying quality criterion is available.

Accordingly, we witl select a first order model for this variable.

Note that the command model dynamics can be varied in real time as the parameter vector

follows the aircraft's flight condition for the variable=gain case. Thus, different flying

qualifies can be obtained at different flight conditions. We should point out that the

command model selected here is not intended as a recommendation for flying qualities, but

only as an example for use in demonstrating the Integrated SOFFT control methodology

developed. With the advent of advanced aircraft with significantly different airfi'ame

components and new propulsion systems, the question of what flying qualities are most

appropriate is itself a subject of research.

We will specify the command model for _ch component of the pilot input command

vector as a continuous transfer function. These will the be put into state variable form and

discretized to obtain the command model in the form shown in (6) and (7) for the

sampled-data control problem at hand.

2

(s) = coq
u_, s2+2fqc°qs+c°:q , coq=3,(q=.7

(123)
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2
03p

Y'z (S)= s2 s+o_ , co,=3,(p=.7u.2 +2 _'p rap

(124)

Y,3 (s)= 1 , r, = L5 (125)

u:3 r,. s + 1

y,4 (s) = 1 , ro = 1 (126)

u:4 ro s + 1

3. Feedforward Control Gain Matrices

With the integrated model given in (116) and (117), the pilot input command vector given

in (121) and the command model given in(123) - (126), we can design the feedforward

control law as described in Section II.A.1. Of course, the integrated system and command

model were first discretized using the standard sampled-data discretization methods and

the control-dependent measurement augmentation shown in (42) and (43) was applied to

the integrated system before actually computing the feedforward gain matrices.

Note that, the system augmentation due to the control-dependent measurements increases

the order of the integrated system from 11 to 13. As only two of the control components

are used in the measurements, we only need to augment the integrated state by those two

components. The feedforward control has the form (also see Fig 3, p. 16)

u_, = -K_ x_ - K, z, - K_, ua
(10)

Using the perfect tracking feedforward control case, the three gain matrices in (10) were

computed according to equations (11) - (13). These gain matrices are shown in Tables 9,

10and 11.
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Table 9. Feedforward Control Gain Matrix : K"
x

.; V_" a; q;
• " 0. 0248 -1.5723 -7. 1625
• 0.0000 0.0000 O. 0000

,,.
• 0.0000 0.0000 0.0000

," -0. 4874 -2. 9462 -7. 0169

.. p; < ¢;
Wt

• 0.0000 0.0000 0.0000
• 6.3787 0.2085 -0.0138

m -0.3263 -6.7200 0.0012

x" -0.0006 -0.0003 -0.0003

Rt

-0.0011 0.0000 0.0000
u
, 0.0000 0.0000 0.0000

• 0.0000 0.0000 0.0000
w•

0.6279 -0.0003 0.0002

-0.0128

0.0000
0.0000

-1.0784

N;.
-0.0033

0.0000

0.0000
1.3406

g
0.0001

-6.4473

0.5715

-0.0632

N2.
-0.0001

0.0000
0.0000

0.2716

Table 10. Feedforward Control Gain Matrix : K
z

tita
v

u*

II*

Z 1

7.1230
0.0000

0.0000
6.879J

Z6

-0.0187

0.0000
0.0000

-2.2904

z2 z 3 z 4 z 5

0.2634 0.0000 0.0000 0.0000

0.0000 -6.5824 -0.2434 0.2978

0.0000 0.3351 0.0124 6.5727
0.2544 -0.0007 0.0000 0.0025

Table 11. Feedforward Control Gain Matrix : K
uz

#

<

<

//zl U:2 I/z3 _'4

0.0488 0.0000 0.0000 -0.0008

0.0000 -0.0451 0.0080 0.0000

0.0000 0.0023 0.1776 0.0000

0.0471 0.0000 0.0001 -0.0935
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Some Important Observations

In the Integrated SOFFT Control methodology we have developed in this study, much of

the "integration" is done by the feedforward control law since we have chosen to have the

feedforward control law be centralized while the feedback is more limited in its cross-

coupling. The feedback control law also performs important integration functions.

However, the feedforward, not being constrained, is free to produce coupling as it finds

necessary. Therefore, we may learn about which subsystems and which variables would

be coupled if we did not have constraints.

With these thoughts in mind, observe the feedforward gain matrices for particular coupling

trends. In K_ , note that the elements in the first row, on columns 9, 10, 11, have very

small values. These elements correspond to the coupling from the propulsion system to

the longitudinal dynamics subsystem. Clearly, the SOFFT feedforward does not produce

much coupling from the propulsion to longitudinal subsystems.

On the other hand, the 4 th row dements on columns 1 -4 do not have negligibly small

values. These terms correspond to the coupling from the longitudinal dynamics to the

propulsion subsystem. In other words, the SOFFT feedforward uses longitudinal

information in propulsion, but does not use the propulsion state in the longitudinal

control. Also note that, with the possible exception of the sidelip term/C_(4,5), there is

little coupling from the lateral dynamics to the propulsion subsystem. As would be

expected in level flight, the lateral control does not use information from any other

subsystem.

K, produces a leading control movement when the pilot moves his commands. Note that

when an acceleration command is given, the initial control will be to increase the thrust

through the propulsive control. However, only a small amount of stabilator control is

used to maintain the pitch rate from moving. However, when a pitch rate command (with

no acceleration command) is given, both the stabilator (with pitch thrust vectoring) and

the propulsion control move in a coupled manner.

While these observations are often what an experienced designer might expect, it appears

that the SOFFT feedforward control gain matrices contain important information as to

which subsystems need coupling and maybe how much coupling. It is always a good idea

to verify one's intuition with more objective methods.
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C. FEEDBACK CONTROL DEVELOPMENT

With the feedforward control obtained, we can follow the development in Section II.A. 1

and Section Ill to design a feedback control law for the integrated/constrained flight and

propulsion control system. A Proportional-Integral-Filter (PIF) feedback control law was

designed. The structure of the feedback law is as described in Section II.A. 1. We show

the relevant equations here for convenience.

(20)

With the control vector having 4 components and the integral feedback vector having 4

components as well, the system state is augmented fi'om 13 to 21. Accordingly, the

feedback vector consisting of the 10 measurements together with the 4 controls and 4

integrators is augmented to a dimension of 18.

The sampling rate used for sampling the sensor outputs and for updating the control

commands is 25 Hz corresponding to a sampling period of 0.04 sec. The integral error

feedback is obtained by using (121) to select the state components in the integral (more

correctly, the accumulator). The control component of the integral is determined by H u .

rO 0 0 0

0 .05 0 0
/./

"'=o o .05 o
0 0 0 .05

k

(127)

The reason for using any control at all in the integrators is due to problems encountered in

obtaining an initial stabilizing gain when the integrator produces a double eigenvalue in the

system. For example, if the roll rate error is integrated for feedback, the integrator state is

closely related to the roll angle component of the state. These conditions place at least

numerical difficulties on the algorithms used. We have found, by experience, that adding a

small amount of the corresponding control into the integrator differentiates it sutticiently

to make the numerical problems disappear. We are not aware of a theoretical reason for
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this condition. Presumably, an algorithm specifically designed to handle multiple

eigenvalues would not run into the same difficulties. However, we have never tried to test

this hypothesis.

The form of the control is given by (50) and (51) which we repeat here for convenience.

("/ (50)

( w

Yxlk

(51)

Recall that Kfs ,K,_. and K_o are dimensioned -_ x nyj ,.,_ x ..j and ._ x n1_ , resp.. As

mentioned before, with 4 control components and 18 feedback variables, the integrated

feedback gain matrix has the dimensions of 4x 18. The first 10 feedback variables are the

measurements obtained f_om the sensors as shown in Table 7. The next 4 components are

the control commands and the remaining 4 are the integrators.

1. Feedback Constraints

The considerations discussed at the end of Section 1V.B.3 "Some Important

Observations", can now provide some helpful hints as to how to select the constraints on

feedback coupling of the subsystems. Accordingly, we first constrain the lateral controls

to use only lateral variables for feedback. Then, with the exception of the sidelip angle,

we constrain the propulsionand the longitudinalsubsystems from using lateral feedback

variables,i.e.,measurements,controlsor integrators.We allow the sideslipcoupling

becauseitisan inputintothepropulsionopen-loopsystem.Accordingly,therealreadyis
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some coupling present. We are not really increasing the complexity of the closed-loop

system by allowing further coupling. Only the extent of coupling may change.

Finally, we constrain the longitudinal control from using the propulsion measurements of

HPCT and SMHC. However, we allow the use of the low and high rotor rpm's,

N_ and N 2 , in the measurements, largely as an experiment, to see if it will have an

impact. We did not see any important impact and would not recommend this coupling in

general.

With the exception of the lateral feedback variables, the propulsion subsystem control

was not constrained. Table 12 shows the constraint matrix, Z, used in the optimization of

the feedback control gain matrix.

Table 12. Constraint (Zero) Matrix : Z

a= a q fl p
ue 1.0000 1.0000 1.0000 1.0000 0.0000

u¢ 0.0000 0.0000 0.0000 1.0000 1.0000

u_ 0.0000 0.0000 0.0000 1.0000 1.0000
u, 1.0000 1.0000 1.0000 1.0000 0.0000

ue r N l N2 HPCT SMHC

u, 0.0000 1.0000 1.0000 0.0000 0.0000

u¢ 1.0000 0.0000 0.0000 0.0000 0.0000
1.0000 0.0000 0.0000 0.0000 0.0000

U, 0.0000 1.0000 1.0000 1.0000 1.O000

Ua U_ U¢ U, Iq

ua 1.0000 0.0000 0,0000 1.0000 1.0000

u_ 0.0000 1.0000 1.0000 0.0000 0.0000

u_ 0.0000 1.0000 1.0000 0.0000 0.0000
u 1.0000 0.0000 0.0000 1.0000 1.0000

Ip I, I°,
u° O.OOOO 0.0000 1.0000

u, 1.0000 1.0000 0.0000

u. 1.0000 1.0000 0.0000

u, 0.0000 0.0000 1.0000

2. Feedback Gain Matrix

Using the algorithm developed in this work for the Integrated/Constrained Output

Feedback Control problem, we computed the optimal feedback gain matrix. After some
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trial-and-errorexperimentation, the gain matrix shown in Table 13 was computed. Simple

observation indicates that the algorithm placed zero gain values at the appropriate

locations specified by the constraint matrix.

Table 13. Constrained Feedback Gain Matrix : K

a q P P
-0 -3.4588 -21.9572 -13.8515 -0.0042 0.0000

"* 0.0000 0.0000 0.0000 -67.4612 11.3506

u, 0.0000 0.0000 0.0000 7.1143 0.7541

,, 0.4146 -2.2134 -1.4035 -0.1674 0.0000

r N, N: HPCT SMHC
u° 0.0000 -0.2679 -0.6348 0.0000 0.0000

"* 5.1052 0.0000 0.0000 0.0000 0.0000

", -9.2444 0.0000 0.0000 0.0000 0.0000

,, 0.0000 2.5412 1.4876 2.1020 0.1145

Z/a /4# U¢
U#

,, 10.6735 0.0000 0.0000
0.0000 12.4872 2.9060

"" 0.0000 0.6132 12.5980

", 0.5549 O. 0000 O. 0000

.. Ip I, I..
,, O. 0000 O. 0000 O. 4299

14.1108 -1.4198 0.0000
"" 2.2957 -3.1476 0.0000

"" O. 0000 0.0000 8.5901

U. ]q

2.4268 -6.7740
0.0000 0.0000
0.0000 0.0000

8.0908 -1.8906

The constrained feedback gain matrix provides the desired simplicity and other

characteristics. However, an interesting question is whether the optimal gain matrix

would not result in pretty much the same matrix as the one computed if we had not placed

all the constraints. Aider all the lateral dynamics are uncoupled from the longitudinal and

propulsion subsystems. In other words, maybe we can achieve approximately the same

result without as much work. Table 14 shows the feedback gain matrix obtained by

optimizing the same cost function without any constraints.

As can be seen from Table 14, the unconstrained feedback gain matrix is highly coupled.

In fact, the coupling seems to be present in all the subsystems. It is surprising to find the

extent to which the lateral dynamics is now coupled with the other subsystems. Clearly,
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the new approach and algorithm are necessary if we want to obtain an

integrated/constrained feedback control law.

Table 14. Unconstrained Feedback Gain Matrix : K

a= u q fl p
g 0

-2.1948 -21.8214 -13.8979 1.3406 2.4836
u, 1.0281 1.2752 -1.0107 -56.0643 20.0745

"v 0.3207 0.3319 0.1278 6.0044 0.2203

,, 0.1629 -2.9952 -!.4927 -2.2007 -4.5740

r N, N2 HPCT SMHC

um -0.1072 -0.9778 -0.2175 0.2034 0.2427

,, 5.8336 -4.3872 -6.7735 -4.8243 13.5707
-9.2235 0.0733 0.6210 0.3184 -1.4593

"" 0.0168 2.7710 1.5883 2.8411 0.8239
m t

u a u, u_, u, lq

,, Ii.5028 O. 4778 i. 1337 I. 3328 -6. 4635

u, 4. 3741 12. 2794 3. 1801 -28. 6426 3.2624

-0. 0300 0.7203 12. 6883 !. 6995 -0. 0859

","" -0. 3811 -0. 4167 -0. 6839 14. 6445 -2. 4864

Ip Ir fa.

uo 4.0241 -1.2069 -0.6368

u, 23.5896 -4.4386 -22.8120

", 1.6205 -3.2986 1.2380

u. -4.5364 1.2960 11.9095

D. SIMULATION RESULTS

A digital simulation of the integrated/constrained SOFFT control law obtained in the

preceding sections together with the combined dynamics of the modified F-15 SMTD

aircraft was developed on the ACET sottware package. The simulation of the modified

F-15 SMTD aircraft was at the flight condition of 30 degrees of angle-of-attack in level

flight. The integrated/constrained SOFFT control law was simulated in the incremental

implementation form (see [1], [2] and Appendix A).

Two cases were simulated. At first, the simulated plant model was the one used in the

feedforward control design. In the second case, the simulated plant B_ matrix was 10%
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smaller than the control design model. In both cases, the simulation introduced no random

plant or measurement noise into the system.

Figure 4 shows the results of the first simulation. This case did not provide a challenge for

the feedback control law. However, we can see the feedforward control law producing

the necessary control activity to track the pilot input commands and produce the response

specified by the command model. In Figure 4a, we see that the pilot inputs are

commanding an acceleration in the speed of the aircraft at the rate of 6£dsec/sec for a

period of 4 seconds and a simultaneous negative pitch rate plus angle-of-attack of-5

deg/sec for 3 seconds. These pilot input commands have been simulated as pulses or steps

that last a finite period of time. Also note that the ACET simulation module automatically

generates the y-axis labels which correspond to the variables plotted; e.g., UZ(4) is the

fourth component of u,, or the pilot input command of a=, YX(3) is the third component

of y, or the pitch rate, etc.
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Figure 4b. Modified F-15 SMTD Integrated SOFFT Control Simulation, or=30 °,

Command Model Outputs

Figure 4b shows the nonzero command model state variables (z,) which correspond to

the flying quality commands for the first and fourth elements in eq (121). Note that these

represent the desired response of the aircraft to the input commands.

In Figure 4c, we see the response o£ the airframe variables to these commands. The

acceleration tracks the commands with high accuracy. The pitch rate has a similar but

somewhat different response than the command model output. The reason is that the

command applies to the linear combination of the pitch rate and angle-of-attack

71



_r
)-

2_

2 4

(_EC;

A
¢M

>-

-2

-4

-6

-8

-10

i!!!!ii!!i!!i.............._.................T...............: ............ {................................."............................. _...................... "..............._.............

0 2 4 6

TMEtSEC)

_P

-Z5

-5,0

-7.5

-10.0

-12.5 0

.......__. ............. : _ _ "_. i_ I_E:_I':_._.2_ I/. .......... _..., _ i_ _._'_'_i_._._,

-: _ I__............ ........... _............. ÷................_.................I_1_ __'.__ __.................................................... :

::::::_:__ ":_:: _i_: ==============================================================================================_:i_:::i ;:_:' i:" _::::'_:.::: ::

i

L

2 4 t)

25

2O

15

10

5

0
0

Figure 4c.

T_E_CI.

............................ _.............. _._.:_,;_'_:--'_2:2_I_::T_':T_I _._ ....':_ii___i_._i;_i_i_,121_._._ _: " ' . "". _Y ,] .
..................... ; ........... _': " V"............... _.............. ¢...............................................

'_ ii2 _ . _- . :; il .: ! ,,i.i_....: ............ , ..................... 1...............................

2 4

(SEC_

Modified F-15 SMTD Integrated SOFFT Control Simulation, or=30°,

Airframe Variables

72



x
>-

2

0

-2

-4

-.6

....._" .......... i ' ! ......... :....... :.......... i ..... J...... : ................

/ ...........................! i ! :

i ! '
i i . i ! i

!............................ T................. "................................ r..............................................................

...............i..................i.................._....

0 2 4 6

TI_ tSEC)

E
x

1

0

-1

-2

-3
0 2 4 6

TIME(SEC)

A

>--

.ZZZ Ii'_ZZZZZi_.IZZZZI_ZZIIZZIIII_Z_ZZZZZIIIZZZZIIZIIZII
o _ ............_'__ ............._.................._.................!................._................:................_.................

.................!..................i..................i..................!..................i..............................._.................'i-.................:.................._.................................

.................;.................T................._.................._.................._..................!............. +................._..................f.................!................._................

'_ :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::i, ....._..........................................._:::::::i.................

.................._.................i..................!.................t................._.................._..................;.................,_................._............-.._
......................................................_................._.................i..................i.................._................._................._..................f..................:.................

-2

25

0 2 4 6

T]UE(SEC)

A

O5

.........:.................i................._..................:.................:................._................._IZIIIII ........._..............._"...............:...............
i i ..............._................_................._................Stai-==gn._ZZZZk.ZZZZZIZIZZZZI

i i :

0 2 4

{SEC}

Figure 4d. Modified F-15 SMTD Integrated SOFFT Control Simulation, or=30 °,
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Control Variables

As the pitch angle and the angle-of-attack fall, the aircraft picks up speed from the

combined effects of the pitch action reducing the drag and the initial increase in thrust.

The propulsion variables shown in Figure 4d first increase to produce more thrust needed

to accelerate, but then fall to lower levels to avoid producing too much acceleration at the

new angle-of-attack. Note that the stan margin remains in positive territory most of the

time; i.e., it remains higher than its original comfortable level.

Finally, note the coordinated action of the propulsion and pitch controls shown in Figure

4e. Both controls move when the pitch rate command pulse input by the pilot ends at 3
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seconds. On the other hand, when the acceleration pulse ends at 4 seconds, we see a

reaction only in the propulsion control. This behaviour seems completely in line with our

previous analysis of the feedforward gain matrices. Since the simulated plant and the

design plant model are the same, the feedforward control produces the perfect response

desired and the feedback control is null because the feedback state error is zero.

Figure 5 shows the simulation results for the second case considered. In this case, the

simulated plant is different than the one used in designing the feedforward and feedback

control laws. Accordingly, the feedforward control results in a state trajectory which is

almost perfect but not exactly the same as the desired response. Therefore, the feedback

state vector, the difference between the actual and feedforward states, is not zero. As a

result the feedback control law tries to-minimize the error by appropriate action.
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Figure 5a. Modified F-15 SMTD Integrated SOFFT Control Simulation, Perturbed Plant

Pilot Input Commands
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As seen in Figure 5a, the pilot inputs are the same as the in the first case. The pilot

commands an acceleration in the forward speed and a negative pitch rate action. It may be

of interest to note that the feedforward control, which (by design) depends only on the

input commands, will be the same as the first case since the design plant model has not

changed. Recall that the simulated plant model has been perturbed, but the control design

models have remained the same.

Figure 5b shows the relevant command model state variables generated in response to the

pilot input commands. Since the command model has not changed, the input commands

produce the same desired response as the first case.

In Figure 5c, we se¢ some of the airfi'ame variables. As noted earlier, since the control

laws have been designed using an erroneous plant model, the state variables are not going

to be perfect replicas of the desired response. On close observation, we can see that the

forward acceleration is slightly different than the commanded acceleration in Figure 5b.

However, the overall response is quite similar. It is harder to notice the differences in the

pitch rate. Comparing the pitch rate and angle-of-attack to the desired response shown in

Figure 4c, any offsets are hard to see.
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Figure 5d shows the propulsion variables. Differences from the previous case are small

and hard to see.

The feedforward control variables are shown in Figure 5e. Note that these variables are

the same as the first case simulations for the same reasons discussed previously; i.e., the

pilot input commands are the same, the command model and the plant model used in the

feedforward control design are the same as the first case.
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Feedforward Control Variables
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The feedback controlvariablesare shown inFigure 5£ Note thatthe feedback controllaw

in this case is not nuU and is trying to reduce the errors present between the actual state

and the feedforward state corresponding to the desired response. Thus, a I(FA error in the

control effectiveness matrix is barely noticed. It should also be noted that the feedback

control is able to achieve this response with a control effort equal to approximately one

tenth of the feedforward control leveJs. Of course, when plant and measurement noise is

present, the feedback control activity will increase noticeably as the high frequency

content will increase.
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The closed-loop modes of the aircratt are shown in Table 15

Table 15. Closed-Loop Equivalent s-plane Eigenvalues

REAL IMAGINARY DAMP ING P_TIO _LP+T_ FREQUENCY

-0.001793 0.000000 1.00 0.00
-0.016570 0.000000 1.00 0.02
-0.017264 0.000000 1.00 0.02
-0.101969 0.000000 1.00 0.10
-0.108535 0.000000 1.00 0.11
-0.392538 0.000000 1.00 0.39
-0.555280 0.000000 1.00 0.56
-1.986110 -2.050269 0.70 2.85
-1.986110 2.050269 0.70 2.85
-2.289180 -0.513772 0.98 2.35
-2.289180 0.513772 0.98 2.35

-2.359946 -0.092281 1.00 2.36
-2.359946 0.092281 1.00 2.36
-4.524391 -4.666417 0.70 6.50
-4.524391 4.666417 0.70 6.50
-6.218162 -4.595787 0.80 7.73
-6.218162 4.595787 0.80 7.73

-10.174557 0.000000 1.00 10.17
-12.552118 0.000000 1.00 12.55
-56.438641 0.000000 1.00 56.44

-199.904281 0.000000 1.00 199.90
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V. CONCLUSIONS

The need for integrated or constrained control systems came into greater focus as

advanced aircraf_ brought new subsystems with significant coupling between them. These

included advanced propulsion subsystems with vectored thrust and new aerodynamic

designs of the _e sometimes with new surfaces such as canards and sometimes with

fewer control surfaces such as the tailless aircrafL The coupling produced by these

subsystem developments only added to the existing need for a general method for

designing control laws with arbitrary coupling constraints for decentralized systems.

In this study, we develop an integrated control design methodology which accommodates

constraints on the coupling of subsystems or variables. The methodology uses the SOFFT

control approach and structure, thus maintaining all the advantages of the SOFFT

approach.

The Integrated/Constrained SOFFT Control methodology uses a centralized feedforward

control and a constrained feedback control law. The main conclusion of this work is that

the approach mentioned takes advantage of the coupling among the various subsystems

while maintaining the identity of subsystems for validation purposes and the simplicity of

the feedback control law for ease of understanding the system's behaviour in complicated

nonlinear scenarios. While the use of a centralized SOFFT feedforward is recommended,

it is not a necessity for the methodology. It is possible to use a constrained SOFFT

feedforward to accommodate constraints using the algorithm developed for feedback

systems or by using other methods. The methodology is formulated in detail and the

necessary mathematical development is shown in the previous sections.

The Variable-Gain Output Feedback Control methodology is extended to include equality

constraints which can avoid coupling two variables or two subsystems. Although this

approach was developed within the SOFFT context, it is an independent method for
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designingfeedbackcontrollaws which can be used with or without any feedforward

control system. The Variable-Gain Output Feedback Algorithm is extended to

accommodate equality constraints by specifying that any element of the gain matrix be

zero.

In a more general setting, the algorithm developed can have nonzero values placed as

constraints as well. This allows the optimization of one part of a control law while the

other part (which may have been designed and tested under previous circumstances) is leR

unchanged. Another application is to produce a known amount of coupling between two

variables, such as the aileron-rudder interconnect, by constraining a gain element or block

to maintain a specified value while optimizing the remaining control gains. The algorithm

is monotonic in the cost, reducing the cost at each iteration. The rate of convergence

depends on the particular problem and on the particular constraints placed for a given

problem.

Finally, the Integrated SOFFT Control methodology is used to design an integrated flight

and propulsion control system for the modified F-15 SMTD aircraft as an example of the

approach developed. A centralized SOFFT feedforward control law and a constrained

output feedback control law are designed at a 30 degree angle-of-attack flight condition.

Using the SOFFT approach, the command model is selected to produce desirable flying

qualities for the aircraft. The response of the aircraft to some pilot input commands are

presented.
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APPENDIX A

INCREMENTAL IMPLEMENTATION

WITH CONTROL RATE LIMITS

The incremental implementation given in [5], pp.46-50, can be used to implement the

SOFFT control laws developed in this work. However, this implementation is intended

for systems with position limiters placed on the control values. Here, we want to present

an incremental implementation for systems which contain both control position and

control rate limiters.

The motivation for using an incremental implementation rather than a standard

implementation (which would use total values) remains essentially the same; i.e., avoiding

integrator wind-up due to position limiters, eliminating the use of trim values, improving

the response to constant disturbances, etc. In the present implementation, we include the

effect of control rate fimiters on tracking errors and the resulting introduction of

phase shifts or time delays which can produce significant instabilities in the dosed-

loop system. The reasons for selecting one particular form of incrementation over

another are of a heuristic nature. Here, we simply present the proposed incremental

implementation without further comment.

The system we want to control is of the form shown in eq. (81) and (82) or , more

generally, as given in [5], eq. (22) and (23). These represent a nonlinear system having a

wide operating range over which the system parameters may vary considerably. The

details of the linearization are shown in Section II. 1 of [5].
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Compute the control position command using the following equations.

u_ = lime {u,a,_ _ +At vk} (A-l)

(A-2)

where lira R and lira e are functions which limit the control rate and the control position to

the specified range of values, respectively. We select these limits to be the same as those

set by the plant actuator limiters. In other words, the system actuators do not allow the

control position and rate to go above these values. Accordingly, the performance of the

closed loop plant is not impacted by the software limit functions placed in the

equations above, at least not immediately.

The feedforward control law can be implemented as follows.

zk+_ = _, (Pk) zk + F, (Pk) u,, (A-3)

Az, = z, - zk_ 1 (A-4)

Au,k = u,k - u,,_, (A-5)

Au_ = -K_ (p,) Ax_ - K, (p,) Az k - K.. (Pk) Au,_ (A-6)

Axe., = _x (P,) hx_ + F. (p,) hu_

=cAp ) Ax;

y: = y__, + Ay_

(A-7)

(A-8)

(A-9)

We do not place any limiters on the feedforward control variables computed in the above

equations. However, depending on the particular problem, it may be necessary or

desirable to place some limits on the feedforward state, measurement or control variables.
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Also note that the total value of the feedforward state vector is not computed although a

value is implied by the incremental feedforward state vector which is used to compute the

total value (except for the measurement bias valde which will caned out in (A- 11)) of the

feedforward measurements. Similarly, the total value of the feedforward control is not

computed in this implementation.

The feedback control law is implemented as follows.

Y_ =Yn -Y_
(A-IO)

A_k =-K=(Pk) AY_ -At K_(pk)[Hy(pk)___ + H_(Pk) u__,]

- At K, (Pk) Vk-I

(A-11)

(A-12)

(A-13)

_, = u-__ l +At v__ l (A-14)

We do not place any limiters on the feedback state, measurement or control vectors in the

equations above although circumstances may necessitate their use in certain problems.

The limiting function is placed on the total control rate and control position vectors shown

in equations (A-l) and (A-2). In a sequential presentation of the incremental

implementation equations, first (A-2) then (A-l) would follow (A-14).

It is also important to note that the control faltering action of the PIF feedback structure is

still present in the implementation given above. Equation (A-12) is simply an algebraic

restatement of the more usual form of this equation. As long as no limits are placed on the

feedback implementation equations, the filtering action will be present.
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APPENDIX B

INTEGRATED FLIGHT AND PROPULSION MODEL

DERIVATION

In this appendix, we show the derivation of the integrated flight and propulsion model

used in Section IV.A. as the example problem which is a modified version of the F-15

SMTD aircraft. The derivation is quite straight-forward and is given here for

completeness.

The state equations for the airframe and propulsion subsystems are of the form

x, = al x, + B1ux_+ ";, u. 03-1)

x2 = A 2 x2 +B 2 u.2 +B; u= (B-2)

where the subscript 1 denotes the airframe parameters and the subscript 2 denotes the

propulsion parameters. The cross-coupling terms, the last terms in the equations above,

are given by

where F8 and Dp are the gross thrust and the drag due to the engine.
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The cross-coupling terms defined above can be expressed in terms of the state and control

vectorsas follows.

uu = Enx: + FIzu,.2 + Gnu.

U2 2 m E21Xl

03-4)

03-5)

Since the airframe model includes both the longitudinal and lateral dynamics, the

components of u=, namely the angle=of-attack and the sideslip angle, can be expressed in

terms of the airframe state alone.

Substituting (B-5) into 03-4), eliminate the cross-coupling term u,,.

u,l = (GI2E2_)x_+ E_:x2+ Fnux: 03-6)

= EllXl -I.- E12x2 4- Fi2uz2
(I3-7)

Now substituting 03-5) and 03-7) for the cross-coupling terms in 03-1) and 03-2) and

manipulating, the integrated continuous open-loop system can be found as

03-8)

xe = [B_2E21]xl + A2 x2 + B2 u=2 03-9)

Comparing (116) and (117) with 03-8) and 03-9), we note that they have the same form.

Therefore, equating the system matrices provides the desired result.
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